Selected Grantee Publications
- Clear All
- 27 results found
- Rodent Models
- fic
- nhlbi
The Splicing Factor hnRNPL Demonstrates Conserved Myocardial Regulation Across Species and Is Altered in Heart Failure
Draper et al., FEBS Letters. 2024.
https://pubmed.ncbi.nlm.nih.gov/39300280/
The 5-year mortality rate of heart failure (HF) is approximately 50%. Gene splicing, induced by splice factors, is a post-transcriptional modification of mRNA that may regulate pathological remodeling in HF. Researchers investigated the role of the splice factor heterogenous nuclear ribonucleoprotein-L (hnRNPL) in cardiomyopathy. hnRNPL protein expression is significantly increased in a male C57BL/6 transaortic constriction–induced HF mouse model and in clinical samples derived from canine or human HF patients. Cardiac-restricted knockdown of the hnRNPL homolog in Drosophila revealed systolic dysfunction and reduced life span. This study demonstrates a conserved cross-species role of hnRNPL in regulating heart function. Supported by ORIP (K01OD028205) and NHLBI.
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.
Sex-Specific Cardiac Remodeling in Aged Rats After Adolescent Chronic Stress: Associations with Endocrine and Metabolic Factors
Dearing et al., Biology of Sex Differences. 2024.
https://pubmed.ncbi.nlm.nih.gov/39180122
Cardiovascular disease is a leading cause of death in the world. The potential effects of chronic stress on the development and progression of cardiovascular disease in the aged heart are unknown. In this study, researchers investigated sex- and stress-specific effects on left ventricular hypertrophy (LVH) after aging. Male and female rats were exposed to chronic stress during adolescence and then challenged with a swim test and a glucose tolerance test before and after aging 15 months. As a group, female rats showed increased LVH in response to early life stress. Male rats showed individual differences in vulnerability. These results indicate that sex and stress history can interact to determine susceptibility to cardiovascular risks. Supported by ORIP (F30OD032120, T35OD015130) and NHLBI.
Evolution of the Clinical-Stage Hyperactive TcBuster Transposase as a Platform for Robust Non-Viral Production of Adoptive Cellular Therapies
Skeate et al., Molecular Therapy. 2024.
https://pubmed.ncbi.nlm.nih.gov/38627969/
In this study, the authors report the development of a novel hyperactive TcBuster (TcB-M) transposase engineered through structure-guided and in vitro evolution approaches that achieve high-efficiency integration of large, multicistronic CAR-expression cassettes in primary human cells. This proof-of-principle TcB-M engineering of CAR-NK and CAR-T cells shows low integrated vector copy number, a safe insertion site profile, robust in vitro function, and improved survival in a Burkitt lymphoma xenograft model in vivo. Their work suggests that TcB-M is a versatile, safe, efficient, and open-source option for the rapid manufacture and preclinical testing of primary human immune cell therapies through delivery of multicistronic large cargo via transposition. Supported by ORIP (F30OD030021), NCI, NHLBI, and NIAID.
Loss of Lymphatic IKKα Disrupts Lung Immune Homeostasis, Drives BALT Formation, and Protects Against Influenza
Cully et al., Immunohorizons. 2024.
https://pubmed.ncbi.nlm.nih.gov/39007717/
Tertiary lymphoid structures (TLS) have context-specific roles, and more work is needed to understand how they function in separate diseases to drive or reduce pathology. Researchers showed previously that lymph node formation is ablated in mice constitutively lacking IκB kinase alpha (IKKα) in lymphatic endothelial cells (LECs). In this study, they demonstrated that loss of IKKα in lymphatic endothelial cells leads to the formation of bronchus-associated lymphoid tissue in the lung. Additionally, they showed that male and female mice challenged with influenza A virus (IAV) exhibited markedly improved survival rates and reduced weight loss, compared with littermate controls. They concluded that ablating IKKα in this tissue reduces the susceptibility of the mice to IAV infection through a decrease in proinflammatory stimuli. This work provides a new model to explore the mechanisms of TLS formation and the immunoregulatory function of lung lymphatics. Supported by ORIP (T35OD010919), NHLBI, NIAID, and NIAMS.
Time of Sample Collection Is Critical for the Replicability of Microbiome Analyses
Allaband et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38951660/
Lack of replicability remains a challenge in microbiome studies. As the microbiome field moves from descriptive and associative research to mechanistic and interventional studies, being able to account for all confounding variables in the experimental design will be critical. Researchers conducted a retrospective analysis of 16S amplicon sequencing studies in male mice. They report that sample collection time affects the conclusions drawn from microbiome studies. The lack of consistency in the time of sample collection could help explain poor cross-study replicability in microbiome research. The effect of diurnal rhythms on the outcomes and study designs of other fields is unknown but is likely significant. Supported by ORIP (T32OD017863), NCATS, NCI, NHLBI, NIAAA, NIAID, NIBIB, NIDDK, and NIGMS.
A Revamped Rat Reference Genome Improves the Discovery of Genetic Diversity in Laboratory Rats
de Jong, Cell Genomics. 2024.
https://www.cell.com/cell-genomics/fulltext/S2666-979X(24)00069-7
Rattus norvegicus has been used in many fields of study related to human disease; its genome was sequenced shortly after the genomes of Homo sapiens and Mus musculus. Investigators report extensive analyses of the improvements in mRatBN7.2, compared with the previous version. They conducted a broad analysis of a whole-genome sequencing data set of 163 samples from 120 inbred rat strains and substrains. Several additional resources have been created. This new assembly and its associated resources create a more solid platform for research on the many dimensions of physiology, behavior, and pathobiology of rats and can provide more reliable and meaningful translation of findings to human populations. Supported by ORIP (R24OD024617), NHGRI, NHLBI, and NIDA.
Ultrasoft Platelet-Like Particles Stop Bleeding in Rodent and Porcine Models of Trauma
Nellenbach et al., Science Translational Medicine. 2024.
https://www.science.org/doi/10.1126/scitranslmed.adi4490
Platelet transfusions are the current standard of care to control bleeding in patients following acute trauma, but their use is limited by short shelf life and limited supply. Immunogenicity and contamination risks also are a concern. Using ultrasoft and highly deformable nanogels coupled to fibrin-specific antibody fragments, researchers developed synthetic platelet-like particles (PLPs) as an alternative for immediate treatment of uncontrolled bleeding. They report that PLPs reduced bleeding and facilitated healing of injured tissue in mice, rat, and swine models (sex not specified) for traumatic injury. These findings can inform further translational studies of synthetic PLPs for the treatment of uncontrolled bleeding in a trauma setting. Supported by ORIP (T32OD011130) and NHLBI.
Obesity Causes Mitochondrial Fragmentation and Dysfunction in White Adipocytes Due to RalA Activation
Xia et al., Nature Metabolism. 2024.
https://pubmed.ncbi.nlm.nih.gov/38286821/
This study presents a molecular mechanism for mitochondrial dysfunction as a characteristic trait of obesity. Chronic activation of the small GTPase RalA in inguinal white adipocytes (iWAT), in male mice fed a high-fat diet (HFD) represses energy expenditure by shifting mitochondrial dynamics toward excessive fission, contributing to weight gain and metabolic dysfunction. Targeted deletion of RalA in iWAT attenuated HFD-induced obesity due to increased energy expenditure and mitochondrial oxidative phosphorylation. Mechanistically, RalA dephosphorylates inhibitory Serine637 on fission protein Drp1, leading to excessive fission in adipocytes and mitochondrial fragmentation. Expression of a human homolog of Drp1—DNM1L—in adipose tissue is positively correlated with obesity and insulin resistance. These findings open avenues to investigate RalA-Drp1 axis in energy homeostasis. Supported by ORIP (S10OD023527), NCI, NHLBI, and NIDDK.