Selected Grantee Publications
- Clear All
- 166 results found
- Rodent Models
- Swine Models
Thioesterase Superfamily Member 1 Undergoes Stimulus-Coupled Conformational Reorganization to Regulate Metabolism in Mice
Li et al., Nature Communications. 2021.
https://doi.org/10.1038/s41467-021-23595-x
Thermogenesis is suppressed in brown adipose tissue by thioesterase superfamily member 1 (Them1), a long chain fatty acyl-CoA thioesterase. Them1 is highly upregulated by cold ambient temperature, where it reduces fatty acid availability and limits thermogenesis. Investigators show that Them1 regulates metabolism by undergoing conformational changes in response to β-adrenergic stimulation that alter Them1 intracellular distribution. Them1 forms metabolically active puncta near lipid droplets and mitochondria. Upon stimulation, Them1 is phosphorylated at the N-terminus, inhibiting puncta formation and activity, and resulting in a diffuse intracellular localization. Investigators show that Them1 puncta are biomolecular condensates that are inhibited by phosphorylation. Them1 forms intracellular biomolecular condensates that limit fatty acid oxidation and suppress thermogenesis. When energy is demanded, the condensates are disrupted by phosphorylation to allow for maximal thermogenesis. The stimulus-coupled reorganization of Them1 provides fine-tuning of thermogenesis and energy expenditure. Supported by ORIP (S10OD019988) and others.
Mineralocorticoid Receptor Blockade Normalizes Coronary Resistance in Obese Swine Independent of Functional Alterations in Kv Channels
Goodwill et al., Basic Research in Cardiology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34018061/
Impaired coronary microvascular function (e.g., reduced dilation and coronary flow reserve) predicts cardiac mortality in obesity. Mineralocorticoid receptor (MR) antagonism improves coronary microvascular function in obese humans and animals. Inhibition of Kv channels reduced coronary blood flow and augmented coronary resistance under baseline conditions in lean but not obese swine and had no impact on hypoxemic coronary vasodilation. MR blockade prevented obesity-associated coronary arteriolar stiffening independent of cardiac capillary density and changes in cardiac function. These data indicate that chronic MR inhibition prevents increased coronary resistance in obesity independent of Kv channel function and is associated with mitigation of obesity-mediated coronary arteriolar stiffening. Supported by ORIP (U42OD011140, S10OD023438), NHLBI, and NIBIB.
A Participant-Derived Xenograft Model of HIV Enables Long-Term Evaluation of Autologous Immunotherapies
McCann et al., Journal of Experimental Medicine. 2021.
https://doi.org/10.1084/jem.20201908
HIV-specific CD8+ T cells partially control viral replication but rarely provide lasting protection due to immune escape. Investigators showed that engrafting NSG mice with memory CD4+ T cells from HIV+ donors enables evaluation of autologous T cell responses while avoiding graft-versus-host disease. Treating HIV-infected mice with clinically relevant T cell products reduced viremia. In vivo activity was significantly enhanced when T cells were engineered with surface-conjugated nanogels carrying an Interleukin-15 superagonist but was ultimately limited by the pervasive selection of escape mutations, recapitulating human patterns. This “participant-derived xenograft” model provides a powerful tool for developing T cell-based therapies for HIV. Supported by ORIP (R01OD011095), NIAID, NIDA, NIMH, NINDS, and NCATS.
Identification of Basp1 as a Novel Angiogenesis-regulating Gene by Multi-Model System Studies
Khajavi et al., FASEB Journal. 2021.
https://pubmed.ncbi.nlm.nih.gov/33899275/
The authors previously used genetic diversity in inbred mouse strains to identify quantitative trait loci (QTLs) responsible for differences in angiogenic response. Employing a mouse genome-wide association study (GWAS) approach, the region on chromosome 15 containing Basp1 was identified as being significantly associated with angiogenesis in inbred strains. To investigate its role in vivo, they knocked out basp1 in transgenic kdrl:zsGreen zebrafish embryos using a widely adopted CRISPR-Cas9 system. They further showed that basp1 promotes angiogenesis by upregulating β-catenin gene and the Dll4/Notch1 signaling pathway. These results provide the first in vivo evidence to indicate the role of basp1 as an angiogenesis-regulating gene. Supported by ORIP (R24OD017870) and NEI.
The High Affinity Dopamine D2 Receptor Agonist MCL-536: A New Tool for Studying Dopaminergic Contribution to Neurological Disorders
Subburaju et al., ACS Chemical Neuroscience. 2021.
https://pubs.acs.org/doi/full/10.1021/acschemneuro.1c00094
The dopamine D2 receptor exists in two different states, D2high and D2low; the former is the functional form of the D2 receptor and associates with intracellular G-proteins. The D2 agonist [3H]MCL-536 has high affinity for the D2 receptor (Kd 0.8 nM) and potently displaces the binding of (R-(-)-N-n-propylnorapomorphine (NPA; Ki 0.16 nM) and raclopride (Ki 0.9 nM) in competition binding assays. The authors characterized [3H]MCL-536. [3H]MCL-536 as metabolically stable. In vitro autoradiography on transaxial and coronal brain sections showed specific binding of [3H]MCL-536. [3H]MCL-536's unique properties make it a valuable tool for research on neurological disorders like Parkinson's disease or schizophrenia. Supported by ORIP (R43OD020186, R44OD024615) and NIMH.
Establishing an Immunocompromised Porcine Model of Human Cancer for Novel Therapy Development with Pancreatic Adenocarcinoma and Irreversible Electroporation
Hendricks-Wenger et al., Scientific Reports. 2021.
https://pubmed.ncbi.nlm.nih.gov/33828203/
Efficacious interventions to treat pancreatic cancer lack a preclinical model to recapitulate patients' anatomy and physiology. The authors developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. These pigs were successfully generated using on-demand genetic modifications in embryos. Human Panc01 cells injected into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. This model will be useful to bridge the gap of translating therapies from the bench to clinical application. Supported by ORIP (R21OD027062), NIBIB, and NCI.
Interneuron Origins in the Embryonic Porcine Medial Ganglionic Eminence
Casalia et al., Journal of Neuroscience. 2021.
https://pubmed.ncbi.nlm.nih.gov/33637558/
The authors report that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents. Their findings reveal that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies. They demonstrate that porcine medial ganglionic eminence exhibits a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity, and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in monkeys and humans), their work allows direct neurodevelopmental comparisons with this literature. Supported by ORIP (U42OD011140) and NINDS.
Resident Memory T Cells Form During Persistent Antigen Exposure Leading to Allograft Rejection
Abou-Daya et al., Science Immunology. 2021.
https://www.science.org/doi/10.1126/sciimmunol.abc8122
It is not clear whether tissue-resident memory T cells (TRM) function in organ transplants where cognate antigen persists. This is a key question in transplantation as T cells are detected long term in allografts. Investigators showed that antigen-specific and polyclonal effector T cells differentiated in the graft into TRM and subsequently caused allograft rejection. Graft TRM proliferated locally, produced interferon-γ upon restimulation, and their in vivo depletion attenuated rejection. The vast majority of antigen-specific and polyclonal TRM lacked phenotypic and transcriptional exhaustion markers. Single-cell analysis of graft T cells early and late after transplantation identified a transcriptional program associated with transition to the tissue-resident state that could serve as a platform for the discovery of therapeutic targets. Thus, recipient effector T cells differentiate into functional graft TRM that maintain rejection locally. Targeting these TRM could improve renal transplant outcomes. Supported by ORIP (S10OD011925, S10OD019942).
A Platform for Experimental Precision Medicine: The Extended BXD Mouse Family
Ashbrook et al., Cell Systems. 2021.
https://www.sciencedirect.com/science/article/abs/pii/S2405471220305032
Systems genetics using rodent models has recently been revitalized thanks to several resources: the BXD family, the Hybrid Mouse Diversity Panel, and the Collaborative Cross. The main limitation has been modest mapping power and precision due to small strain numbers. Investigators expanded the BXD family of mice to 140 fully isogenic strains. Heritable traits can be mapped with precision. Current BXD phenomes include much omics data and thousands of quantitative traits. BXDs can be extended by a single-generation cross up to 19,460 isogenic F1 progeny. This extended BXD family is an effective platform for testing causal modeling and predictive validation. Supported by ORIP (P40OD011102).
A Pulsatile Release Platform Based on Photo-Induced Imine-Crosslinking Hydrogel Promotes Scarless Wound Healing
Zhang et al., Nature Communications. 2021.
https://pubmed.ncbi.nlm.nih.gov/33723267/
Skin wound healing is a dynamic and interactive process involving the collaborative efforts of growth factors, extracellular matrix (ECM), and different tissue and cell lineages. Although accumulating studies with a range of different model systems have increased our understanding of the cellular and molecular basis underlying skin scar formation, they have not been effectively translated to therapy. Development of effective therapeutic approaches for skin scar management is urgently needed. In this study, team of investigators devise a water-oil-water double emulsion strategy to encapsulate proteins within a photo-crosslinkable poly-lactic-co-glycolic acid (PLGA) shell, which can produce microcapsules with pulsatile drug release kinetics after administration. The results show that pulsatile release of the TGF-β inhibitor can accelerate skin wound closure while suppressing scarring in murine skin wounds and large animal preclinical models, suggesting that it could be an effective approach to achieve scarless wound healing in skin. Supported by ORIP (R01OD023700).