Selected Grantee Publications
- Clear All
- 3 results found
- Aquatic Vertebrate Models
- 2020
A Frog with Three Sex Chromosomes that Co-Mingle Together in Nature: Xenopus tropicalis Has a Degenerate W and a Y that Evolved from a Z Chromosome
Furman et al., PLOS Genetics. 2020.
https://pubmed.ncbi.nlm.nih.gov/33166278/
Genetic systems governing sexual differentiation vary among species. Furman et al. investigated a frog with three sex chromosomes, the Western clawed frog, Xenopus tropicalis. They demonstrate that natural populations from the western and eastern edges of Ghana have a young Y chromosome, and that a male-determining factor on this Y chromosome is in a similar genomic location as a previously known female-determining factor on the W chromosome. Their findings are consistent with theoretical expectations associated with recombination suppression on sex chromosomes and demonstrate that several characteristics of old and established sex chromosomes can arise well before they become cytogenetically distinguished. Supported by ORIP (P40OD010997) and NICHD.
Intra-Strain Genetic Variation of Platyfish (Xiphophorus maculatus) Strains Determines Tumorigenic Trajectory
Lu et al., Frontiers in Genetics . 2020.
https://www.frontiersin.org/articles/10.3389/fgene.2020.562594/full
Xiphophorus interspecies hybrids represent a valuable model system to study heritable tumorigenesis. Although the ancestors of the two X. maculatus parental lines, Jp163 A and Jp163 B, were siblings produced by the same mother, backcross interspecies hybrid progeny between X. hellerii and X. maculatus Jp163 A develop spontaneous melanoma initiating at the dorsal fin due to a regulator encoded by the X. maculatus genome; the backcross hybrid progeny with X. hellerii or X. couchianus and Jp163 B exhibit melanoma on their flanks. Comparative genomic analyses revealed genetic differences are associated with pathways highlighting fundamental cellular functions. Disruption of these baselines may give rise to spontaneous or inducible tumorigenesis. Supported by ORIP (R24OD011120), NCI, and NIGMS.
3-D Printed Customizable Vitrification Devices for Preservation of Genetic Resources of Aquatic Species
Tiersch et al., Aquacultural Engineering. 2020.
https://www.sciencedirect.com/science/article/pii/S0144860920300406
Sperm vitrification as an alternative approach to conventional cryopreservation allows quick and low-cost sample preservation and is suitable for small-bodied aquatic species with miniscule testis, fieldwork at remote locations, and small-scale freezing for research purposes. Tiersch et al. report the developing of operational prototypes of 3-dimensional (3-D) printed vitrification devices. This study demonstrated the feasibility of developing standardized low-cost devices fabricated by 3-D printing with functions including vitrification, volume control, labeling, protection, and storage. These prototypes can be further developed to assist development of germplasm repositories to protect the genetic resources of aquatic species by breeders, hatcheries, aquariums, and researchers. Supported by ORIP (R24OD010441).