Selected Grantee Publications
- Clear All
- 12 results found
- Aquatic Vertebrate Models
- Microscopy
- Preservation
De Novo and Inherited Variants in DDX39B Cause a Novel Neurodevelopmental Syndrome
Booth et al., Brain. 2025.
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awaf035/8004980?login=true
DDX39B is a core component of the TRanscription-EXport (TREX) super protein complex. Recent studies have highlighted the important role of TREX subunits in neurodevelopmental disorders. Researchers describe a cohort of six individuals (male and female) from five families with disease-causing de novo missense variants or inherited splice-altering variants in DDX39B. Three individuals in the cohort are affected by mild to severe developmental delay, hypotonia, history of epilepsy or seizure, short stature, skeletal abnormalities, variable dysmorphic features, and microcephaly. Using a combination of patient genomic and transcriptomic data, in silico modeling, in vitro assays, and in vivo Drosophila and zebrafish models, this study implicates disruption of DDX39B in a novel neurodevelopmental disorder called TREX-complex-related neurodevelopmental syndrome. Supported by ORIP (U54OD030165).
Differentiation Success of Reprogrammed Cells Is Heterogeneous In Vivo and Modulated by Somatic Cell Identity Memory
Zikmund et al., Stem Cell Reports. 2025.
https://pubmed.ncbi.nlm.nih.gov/40086446
Nuclear reprogramming can change cellular fates, yet reprogramming efficiency is low, and the resulting cell types are often not functional. Researchers used nuclear transfer to Xenopus eggs to follow single cells during reprogramming in vivo. Results showed that the differentiation success of reprogrammed cells varies across cell types and depends on the expression of genes specific to the previous cellular identity. Subsets of reprogramming-resistant cells fail to form functional cell types and undergo cell death or disrupt normal body patterning. Reducing expression levels of genes specific to the cell type of origin leads to better reprogramming and improved differentiation trajectories. This study demonstrates that failing to reprogram in vivo is cell type specific and emphasizes the necessity of minimizing aberrant transcripts of the previous somatic identity for improving reprogramming. Supported by ORIP (R24OD031956).
Enhanced RNA-Targeting CRISPR-Cas Technology in Zebrafish
Moreno-Sánchez et al., Nature Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/40091120
CRISPR-Cas13 RNA-targeting systems, widely used in basic and applied sciences, have generated controversy because of collateral activity in mammalian cells and mouse models. In this study, researchers optimized transient formulations as ribonucleoprotein complexes or mRNA-gRNA combinations to enhance the CRISPR-RfxCas13d system in zebrafish. Researchers used chemically modified gRNAs to allow more penetrant loss-of-function phenotypes, improve nuclear RNA targeting, and compare different computational models to determine the most accurate prediction of gRNA activity in vivo. Results demonstrate that transient CRISPR-RfxCas13d can effectively deplete endogenous mRNAs in zebrafish embryos without inducing collateral effects, except when targeting extremely abundant and ectopic RNAs. Their findings contribute to CRISPR-Cas technology optimization for RNA targeting in zebrafish through transient approaches and advance in vivo applications. Supported by ORIP (R21OD034161), NICHD, and NIGMS.
Stat3 Mediates Fyn Kinase-Driven Dopaminergic Neurodegeneration and Microglia Activation
Siddiqui et al., Disease Models & Mechanisms. 2024.
https://pubmed.ncbi.nlm.nih.gov/39641161
The FYN gene is a risk locus for Alzheimer’s disease and several other neurodegenerative disorders. FYN encodes Fyn kinase, and previous studies have shown that Fyn signaling in dopaminergic neurons and microglia plays a role during neurodegeneration. This study investigated Fyn signaling using zebrafish that express a constitutively active Fyn Y531F mutant in neural cells. Activated neural Fyn signaling in the mutant animals resulted in dopaminergic neuron loss and induced inflammatory cytokine expression when compared with controls. Transcriptomic and chemical inhibition analyses revealed that Fyn-driven changes were dependent on the Stat3 and NF-κB signaling pathways, which work synergistically to activate neuronal inflammation and degeneration. This study provides insight into the mechanisms underlying neurodegeneration, identifying Stat3 as a novel effector of Fyn signaling and a potential translational target. Supported by ORIP (R24OD020166).
Establishment of a Practical Sperm Cryopreservation Pathway for the Axolotl (Ambystoma mexicanum): A Community-Level Approach to Germplasm Repository Development
Coxe et al., Animals (Basel). 2024.
https://pubmed.ncbi.nlm.nih.gov/38254376/
The axolotl (Ambystoma mexicanum) is an important biomedical research model for organ regeneration, but housing and maintaining live animals is expensive and risky as new transgenic lines are developed. The authors report an initial practical pathway for sperm cryopreservation to support germplasm repository development. They assembled a pathway through the investigation of axolotl sperm collection by stripping, refrigerated storage in various osmotic pressures, cryopreservation in various cryoprotectants, and in vitro fertilization using thawed sperm. This work is the first report of successful production of axolotl offspring with cryopreserved sperm and provides a general framework for pathway development to establish Ambystoma germplasm repositories for future research and applications. Supported by ORIP (R24OD010441, R24OD028443, P40OD019794).
Conduction-Dominated Cryomesh for Organism Vitrification
Guo et al., Advanced Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38018294/
Vitrification-based cryopreservation via cryomesh is a promising approach for maintaining biodiversity, health care, and sustainable food production via long-term preservation of biological systems. Here, researchers conducted a series of experiments aimed at optimizing the cooling and rewarming rates of cryomesh to increase the viability of various cryopreserved biosystems. They found that vitrification was significantly improved by increasing thermal conductivity, reducing mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier of the conduction-dominated cryomesh. Cooling rates increased twofold to tenfold in a variety of biosystems. The conduction-dominated cryomesh improved the cryopreservation outcomes of coral larvae, Drosophila embryos, and zebrafish embryos by vitrification. These findings suggest that the conduction-dominated cryomesh can improve vitrification in such biosystems for biorepositories, agriculture and aquaculture, and research. Supported by ORIP (R24OD028444, R21OD028758, R24OD034063, R21OD028214), NIDDK, and NIGMS.
Zebrafish as a High Throughput Model for Organ Preservation and Transplantation Research
Da Silveira Cavalcante et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300076R
Organ transplantation increases the quality of life and life expectancy of patients with chronic end-stage diseases, but the preservation of organs for transplantation remains a significant barrier. In the current study, researchers demonstrate the value of zebrafish as a high-throughput model organism in the fields of solid-organ preservation and transplantation, with a focus on heart preservation via partial freezing. Their techniques have the potential to advance research in the fields of cryobiology and solid-organ transplantation. Supported by ORIP (R24OD031955) and NHLBI.
Gigapixel Imaging With a Novel Multi-Camera Array Microscope
Thomson et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.74988
The dynamics of living organisms are organized across many spatial scales. The investigators created assembled a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution, large field-of-view recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, they computationally generated gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This system allows the team to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales (e.g., larval zebrafish, fruit flies, slime mold). Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms. Supported by ORIP (R44OD024879), NIEHS, NCI, and NIBIB.
Functional and Ultrastructural Analysis of Reafferent Mechanosensation in Larval Zebrafish
Odstrcil et al., Current Biology. 2022.
https://www.sciencedirect.com/science/article/pii/S096098222101530X
All animals need to differentiate between exafferent stimuli (caused by the environment) and reafferent stimuli (caused by their own movement). Researchers characterized how hair cells in zebrafish larvae discriminate between reafferent and exafferent signals. Dye labeling of the lateral line nerve and functional imaging was combined with ultra-structural electron microscopy circuit reconstruction to show that cholinergic signals originating from the hindbrain transmit efference copies, and dopaminergic signals from the hypothalamus may affect threshold modulation. Findings suggest that this circuit is the core implementation of mechanosensory reafferent suppression in these young animals. Supported by ORIP (R43OD024879, R44OD024879) and NINDS.
Whole-Organism 3D Quantitative Characterization of Zebrafish Melanin by Silver Deposition Micro-CT
Katz et al., eLife. 2021.
https://www.biorxiv.org/content/10.1101/2021.03.11.434673v1
This research team combined micro-computed tomography (CT) with a novel application of ionic silver staining to characterize melanin distribution in whole zebrafish larvae. The resulting images enabled whole-body, computational analyses of regional melanin content and morphology. Normalized micro-CT reconstructions of silver-stained fish consistently reproduced pigment patterns seen by light microscopy and allowed direct quantitative comparisons of melanin content. Silver staining of melanin for micro-CT provides proof-of-principle for whole-body, 3D computational phenomic analysis of a specific cell type at cellular resolution. Advances such as this in whole-organism, high-resolution phenotyping provide superior context for studying the phenotypic effects of genetic, disease, and environmental variables. Supported by ORIP (R24OD018559).