Selected Grantee Publications
- Clear All
- 7 results found
- Aquatic Vertebrate Models
- Microbiome
- Vaccines/Therapeutics
Tenth Aquatic Models of Human Disease Conference 2022 Workshop Report: Aquatics Nutrition and Reference Diet Development
Sharpton et al., Zebrafish. 2023.
https://pubmed.ncbi.nlm.nih.gov/38117219/
Standard reference diets (SRDs) for aquatic model organisms, vital for supporting scientific rigor and reproducibility, are yet to be adopted. At this workshop, the authors presented findings from a 7-month diet test study conducted across three aquatic research facilities: Zebrafish International Resource Center (University of Oregon), Kent and Sharpton laboratories (Oregon State University), and Xiphophorus Genetic Stock Center (Texas State University). They compared the effects of two commercial diets and a suggested zebrafish SRD on general fish husbandry, microbiome composition, and health in three fish species (zebrafish, Xiphophorus, and medaka), and three zebrafish wild-type strains. They reported outcomes, gathered community feedback, and addressed the aquatic research community's need for SRD development. Discussions underscored the influence of diet on aquatic research variability, emphasizing the need for SRDs to control cross-experiment and cross-laboratory reproducibility. Supported by ORIP (P40OD011021, R24OD011120, and R24OD010998) and NICHD.
Assessment of Various Standard Fish Diets on Gut Microbiome of Platyfish Xiphophorus maculatus
Soria et al., Journal of Experimental Zoology Part B. 2023.
https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23218
Diet is an important factor affecting experimental reproducibility and data integration across studies. Reference diets for nontraditional animal models are needed to control diet-induced variation. In a study of the dietary impacts on the gut microbiome, researchers found that switching from a custom diet to a zebrafish diet altered the Xiphophorus gut microbiome. Their findings suggest that diets developed specifically for zebrafish can affect gut microbiome composition and might not be optimal for Xiphophorus. Supported by ORIP (R24OD011120, R24OD031467, P40OD011021) and NCI.
Disentangling the Link Between Zebrafish Diet, Gut Microbiome Succession, and Mycobacterium chelonae Infection
Sieler et al., Animal Microbiome. 2023.
https://pubmed.ncbi.nlm.nih.gov/37563644/
Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, the authors sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. They report that diet drives the successional development of the gut microbiome, as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet. Supported by ORIP (R24OD010998) and NIEHS.
A Multidimensional Metabolomics Workflow to Image Biodistribution and Evaluate Pharmacodynamics in Adult Zebrafish
Jackstadt et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049550
The evaluation of tissue distribution and pharmacodynamic properties of a drug is essential but often expensive in clinical research. The investigators developed a multidimensional metabolomics platform to evaluate drug activity that integrates mass spectrometry–based imaging, absolute drug quantitation, in vivo isotope tracing, and global metabolome analysis in zebrafish. They validated this platform by evaluating whole-body distribution of the anti-rheumatic agent hydroxychloroquine sulfate and its impact on the systemic metabolism of adult zebrafish. This work suggests that the multidimensional metabolomics platform is a cost-effective method for evaluating on- and off-target effects of drugs. Supported by ORIP (R24OD024624) and NIEHS.
A Novel Wireless ECG System for Prolonged Monitoring of Multiple Zebrafish for Heart Disease and Drug Screening Studies
Le et al., Biosensors and Bioelectronics. 2022.
https://pubmed.ncbi.nlm.nih.gov/34801796/
Zebrafish and their mutant lines have been extensively used in cardiovascular studies. In the current study, the novel system Zebra II is presented for prolonged electrocardiogram (ECG) acquisition and analysis for multiple zebrafish within controllable working environments. The Zebra II is composed of a perfusion system, apparatuses, sensors, and an in-house electronic system. First, the Zebra II is validated in comparison with a benchmark system, namely iWORX, through various experiments. The validation displayed comparable results in terms of data quality and ECG changes in response to drug treatment. The effects of anesthetic drugs and temperature variation on zebrafish ECG were subsequently investigated in experiments that need real-time data assessment. The Zebra II's capability of continuous anesthetic administration enabled prolonged ECG acquisition up to 1 h compared to that of 5 min in existing systems. The novel cloud-based automated analysis with data obtained from four fish further provided a useful solution for combinatorial experiments and helped save significant time and effort. The system showed robust ECG acquisition and analytics for various applications, including arrhythmia in sodium-induced sinus arrest, temperature-induced heart rate variation, and drug-induced arrhythmia in Tg(SCN5A-D1275N) mutant and wildtype fish. The multiple channel acquisition also enabled the implementation of randomized controlled trials on zebrafish models. The developed ECG system holds promise and solves current drawbacks in order to greatly accelerate drug screening applications and other cardiovascular studies using zebrafish. Supported by ORIP (R44OD024874) and NHLBI.
HDAC Inhibitor Titration of Transcription and Axolotl Tail Regeneration
Voss et al., Frontiers in Cell and Development Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/35036404/
New patterns of gene expression are enacted and regulated during tissue regeneration. Romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Single-nuclei RNA sequencing at 6 HPA illustrated that key genes were altered by romidepsin in the same direction across multiple cell types. These results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes. Supported by ORIP (P40OD019794, R24OD010435, R24OD021479), NICHD, and NIGMS.
Acoustofluidic Rotational Tweezing Enables High-Speed Contactless Morphological Phenotyping of Zebrafish Larvae
Chen et al., Nature Communications. 2021.
https://pubmed.ncbi.nlm.nih.gov/33602914/
These authors demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae enabling multispectral imaging of the zebrafish body and internal organs. They developed a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation. With its contactless nature and advantages in speed and automation, the acoustofluidic rotational tweezing system has the potential to be a valuable asset for developmental biology and pre-clinical drug development in pharmacology. Supported by ORIP (R43OD024963), NCI, and NIGMS.