Selected Grantee Publications
- Clear All
- 16 results found
- Aquatic Vertebrate Models
- nichd
- nigms
Gap-Junction-Mediated Bioelectric Signaling Required for Slow Muscle Development and Function in Zebrafish
Lukowicz-Bedford et al., Current Biology. 2024.
https://pubmed.ncbi.nlm.nih.gov/38936363
Using the neuromuscular system of embryonic zebrafish as a model, Lukowicz-Bedford et al. have identified a protein that is responsible for controlling bioelectric signaling in slow muscle development and function. Bioelectric signaling is a form of intercellular communication that has emerged as a key regulator of animal development. These signals can be mediated by gap junction channels—fast, direct pathways between cells for the movement of ions and other small molecules—that are formed in vertebrates by a highly conserved transmembrane protein family called connexins. However, the connexin gene family is large and complex, making it challenging to identify specific connexins that create channels within developing and mature tissues. This work reveals a molecular basis for gap-junction communication among developing muscle cells and shows how disruptions to bioelectric signaling in the neuromuscular system may contribute to developmental myopathies. Supported by ORIP (R24OD026591), NINDS, and NIGMS.
Conduction-Dominated Cryomesh for Organism Vitrification
Guo et al., Advanced Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38018294/
Vitrification-based cryopreservation via cryomesh is a promising approach for maintaining biodiversity, health care, and sustainable food production via long-term preservation of biological systems. Here, researchers conducted a series of experiments aimed at optimizing the cooling and rewarming rates of cryomesh to increase the viability of various cryopreserved biosystems. They found that vitrification was significantly improved by increasing thermal conductivity, reducing mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier of the conduction-dominated cryomesh. Cooling rates increased twofold to tenfold in a variety of biosystems. The conduction-dominated cryomesh improved the cryopreservation outcomes of coral larvae, Drosophila embryos, and zebrafish embryos by vitrification. These findings suggest that the conduction-dominated cryomesh can improve vitrification in such biosystems for biorepositories, agriculture and aquaculture, and research. Supported by ORIP (R24OD028444, R21OD028758, R24OD034063, R21OD028214), NIDDK, and NIGMS.
Tenth Aquatic Models of Human Disease Conference 2022 Workshop Report: Aquatics Nutrition and Reference Diet Development
Sharpton et al., Zebrafish. 2023.
https://pubmed.ncbi.nlm.nih.gov/38117219/
Standard reference diets (SRDs) for aquatic model organisms, vital for supporting scientific rigor and reproducibility, are yet to be adopted. At this workshop, the authors presented findings from a 7-month diet test study conducted across three aquatic research facilities: Zebrafish International Resource Center (University of Oregon), Kent and Sharpton laboratories (Oregon State University), and Xiphophorus Genetic Stock Center (Texas State University). They compared the effects of two commercial diets and a suggested zebrafish SRD on general fish husbandry, microbiome composition, and health in three fish species (zebrafish, Xiphophorus, and medaka), and three zebrafish wild-type strains. They reported outcomes, gathered community feedback, and addressed the aquatic research community's need for SRD development. Discussions underscored the influence of diet on aquatic research variability, emphasizing the need for SRDs to control cross-experiment and cross-laboratory reproducibility. Supported by ORIP (P40OD011021, R24OD011120, and R24OD010998) and NICHD.
Age-Associated DNA Methylation Changes in Xenopus Frogs
Morselli et al., Epigenetics. 2023.
https://www.tandfonline.com/doi/full/10.1080/15592294.2023.2201517
Age-associated changes in DNA methylation have not been characterized yet in amphibians, which include widely studied model organisms. Here the authors present clear evidence that the aquatic vertebrate species Xenopus tropicalis displays patterns of age-associated changes in DNA methylation. Whole-genome bisulfite sequencing profiles from skin samples of frogs representing young, mature, and old adults demonstrated that many of the methylation features and changes they observed are consistent with what is known in mammalian species, suggesting that the mechanism of age-related changes is conserved. The results of this study will allow researchers to leverage the unique resources available for Xenopus to study how DNA methylation relates to other hallmarks of aging. Supported by ORIP (P40OD010997, R24OD031956, R24OD030008) and NICHD.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
Rbbp4 Loss Disrupts Neural Progenitor Cell Cycle Regulation Independent of Rb and Leads to Tp53 Acetylation and Apoptosis
Schultz-Rogers et al., Developmental Dynamics. 2022.
https://www.doi.org/10.1002/dvdy.467
Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression by cooperating with the Rb tumor suppressor to block cell cycle entry. The authors used genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers, and it is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. Rbbp4; Rb1 double mutants show an additive effect on the number of M phase cells. The study demonstrates that Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0, independent of Rb, and suggests that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival. Supported by ORIP (R24OD020166) and NIGMS.
HDAC Inhibitor Titration of Transcription and Axolotl Tail Regeneration
Voss et al., Frontiers in Cell and Development Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/35036404/
New patterns of gene expression are enacted and regulated during tissue regeneration. Romidepsin, an FDA-approved HDAC inhibitor, potently blocks axolotl embryo tail regeneration by altering initial transcriptional responses to injury. Regeneration inhibitory concentrations of romidepsin increased and decreased the expression of key genes. Single-nuclei RNA sequencing at 6 HPA illustrated that key genes were altered by romidepsin in the same direction across multiple cell types. These results implicate HDAC activity as a transcriptional mechanism that operates across cell types to regulate the alternative expression of genes that associate with regenerative success versus failure outcomes. Supported by ORIP (P40OD019794, R24OD010435, R24OD021479), NICHD, and NIGMS.
MIC-Drop: A Platform for Large-scale In Vivo CRISPR Screens
Parvez et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/34413171/
CRISPR screens in animals are challenging because generating, validating, and keeping track of large numbers of mutant animals is prohibitive. These authors introduce Multiplexed Intermixed CRISPR Droplets (MIC-Drop), a platform combining droplet microfluidics, single-needle en masse CRISPR ribonucleoprotein injections, and DNA barcoding to enable large-scale functional genetic screens in zebrafish. In one application, they showed that MIC-Drop could identify small-molecule targets. Furthermore, in a MIC-Drop screen of 188 poorly characterized genes, they discovered several genes important for cardiac development and function. With the potential to scale to thousands of genes, MIC-Drop enables genome-scale reverse genetic screens in model organisms. Supported by ORIP (R24OD017870), NIGMS, and NHLBI.
Loss of Gap Junction Delta-2 (GJD2) Gene Orthologs Leads to Refractive Error in Zebrafish
Quint et al., Communications Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/34083742/
Myopia is the most common developmental disorder of juvenile eyes. Although little is known about the functional role of GJD2 in refractive error development, the authors find that depletion of gjd2a (Cx35.5) or gjd2b (Cx35.1) orthologs in zebrafish cause changes in eye biometry and refractive status. Their immunohistological and scRNA sequencing studies show that Cx35.5 (gjd2a) is a retinal connexin; its depletion leads to hyperopia and electrophysiological retina changes. They found a lenticular role; lack of Cx35.1 (gjd2b) led to a nuclear cataract that triggered axial elongation. The results provide functional evidence of a link between gjd2 and refractive error. Supported by ORIP (R24OD026591), NIGMS, and NINDS.
Cell-Specific Transcriptional Control of Mitochondrial Metabolism by TIF1γ Drives Erythropoiesis
Rossmann et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/33986176/
Transcription and metabolism both influence cell function but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. The authors discovered that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage. Supported by ORIP (R24OD017870), NIGMS, NHLBI, and NCI.