Selected Grantee Publications
- Clear All
- 4 results found
- Aquatic Vertebrate Models
- nhgri
- nidcr
Production and Characterization of Monoclonal Antibodies to Xenopus Proteins
Horr et al., Development. 2023.
https://pubmed.ncbi.nlm.nih.gov/36789951/
Monoclonal antibodies are powerful and versatile tools that enable the study of proteins in diverse contexts. They are often utilized to assist with identification of subcellular localization and characterization of the function of target proteins of interest. However, because there can be considerable sequence diversity between orthologous proteins in Xenopus and mammals, antibodies produced against mouse or human proteins often do not recognize Xenopus counterparts. To address this issue, the authors refined existing mouse monoclonal antibody production protocols to generate antibodies against Xenopus proteins of interest. Here, they describe several approaches for the generation of useful mouse anti-Xenopus antibodies to multiple Xenopus proteins and their validation in various experimental approaches. Supported by ORIP (R24OD021485, S10OD010645) and NIDCR.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
A Chromosome-Level Genome of Astyanax mexicanus Surface Fish for Comparing Population-Specific Genetic Differences Contributing to Trait Evolution
Warren et al., Nature Communications. 2021.
https://pubmed.ncbi.nlm.nih.gov/33664263/
Identifying the genetic factors that underlie complex traits is central to understanding the mechanistic underpinnings of evolution. Cave-dwelling Astyanax mexicanus populations are well adapted to subterranean life and many populations appear to have evolved troglomorphic (morphological adaptation of an animal to living in the constant darkness of caves) traits independently, while the surface-dwelling populations can be used as a proxy for the ancestral form. Warren et al. present a high-resolution, chromosome-level surface fish genome, enabling the first genome-wide comparison between surface fish and cavefish populations. Using this resource, they performed quantitative trait locus (QTL) mapping analyses and found new candidate genes for eye loss (dusp26). They also generated the first genome-wide evaluation of deletion variability across cavefish populations to gain insight into this potential source of cave adaptation. The surface fish genome reference now provides a more complete resource for comparative, functional and genetic studies of drastic trait differences within a species. Supported by ORIP (R24OD011198), NIA, NICHD, NIGMS, amd NIDCR.
Trim-Away Mediated Knock Down Uncovers a New Function for Lbh During Gastrulation of Xenopus laevis
Weir et al., Developmental Biology. 2021.
https://pubmed.ncbi.nlm.nih.gov/33159936/
The protein Lbh was identified as necessary for cranial neural crest cell migration in Xenopus. To investigate its role in embryonic events, the authors employed the technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody. Early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increase in mesodermal cell migration and decrease in endodermal cell cohesion. The technique is also effective on a second abundant maternal Protein Kinase C And Casein Kinase Substrate In Neurons 2. Supported by ORIP (R24OD021485) and NIDCR.