Selected Grantee Publications
- Clear All
- 8 results found
- Aquatic Vertebrate Models
- nci
- nhgri
Validity of Xiphophorus Fish as Models for Human Disease
Schartl and Lu, Disease Models and Mechanisms. 2024.
https://pubmed.ncbi.nlm.nih.gov/38299666/
Xiphophorus is the one of the oldest animal systems for studying melanoma. In this article, the authors summarize current Xiphophorus models for other human diseases. They review how Xiphophorus fishes and their interspecies hybrids can be used for studying human diseases and highlight research opportunities enabled by these unique models (both established and emerging). They identified several emerging Xiphophorus models, including for albinism, micromelanophore pigmentation, fin regeneration, and diet-induced obesity. The research on cancer and reproductive maturation discussed in this review substantiates the value of Xiphophorus as a model for human disease throughout all three phases of validation—face, construct, and predictive—and continues to provide important scientific insights. Supported by ORIP (R24OD031467, R21OD031910) and NCI.
Assessment of Various Standard Fish Diets on Gut Microbiome of Platyfish Xiphophorus maculatus
Soria et al., Journal of Experimental Zoology Part B. 2023.
https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23218
Diet is an important factor affecting experimental reproducibility and data integration across studies. Reference diets for nontraditional animal models are needed to control diet-induced variation. In a study of the dietary impacts on the gut microbiome, researchers found that switching from a custom diet to a zebrafish diet altered the Xiphophorus gut microbiome. Their findings suggest that diets developed specifically for zebrafish can affect gut microbiome composition and might not be optimal for Xiphophorus. Supported by ORIP (R24OD011120, R24OD031467, P40OD011021) and NCI.
High-Resolution Genomes of Multiple Xiphophorus Species Provide New Insights into Microevolution, Hybrid Incompatibility, and Epistasis
Lu et al., Genome Research. 2023.
https://pubmed.ncbi.nlm.nih.gov/37147111/
Existing Xiphophorus genome assemblies are not at the chromosomal level and are prone to sequence gaps, hindering advancement of evolutionary, comparative, and translational biomedical studies. Investigators assembled high-quality chromosome-level genome assemblies for three distantly related Xiphophorus species. They found that expanded gene families and positively selected genes associated with live bearing. Positively selected gene families were enriched in nonpolymorphic transposable elements, suggesting that dispersal has accompanied the evolution of the genes, possibly by incorporating new regulatory elements. The investigators also characterized interspecific polymorphisms, structural variants, and polymorphic transposable element insertions and assessed their association to interspecies hybridization-induced gene expression dysregulation related to specific disease states in humans. Supported by ORIP (R24OD011120, R24OD031467, R24OD011198) and NCI.
Gigapixel Imaging With a Novel Multi-Camera Array Microscope
Thomson et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.74988
The dynamics of living organisms are organized across many spatial scales. The investigators created assembled a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution, large field-of-view recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, they computationally generated gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This system allows the team to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales (e.g., larval zebrafish, fruit flies, slime mold). Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms. Supported by ORIP (R44OD024879), NIEHS, NCI, and NIBIB.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
Cell-Specific Transcriptional Control of Mitochondrial Metabolism by TIF1γ Drives Erythropoiesis
Rossmann et al., Science. 2021.
https://pubmed.ncbi.nlm.nih.gov/33986176/
Transcription and metabolism both influence cell function but dedicated transcriptional control of metabolic pathways that regulate cell fate has rarely been defined. The authors discovered that inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) rescues erythroid differentiation in bloodless zebrafish moonshine (mon) mutant embryos defective for transcriptional intermediary factor 1 gamma (tif1γ). Upon tif1γ loss, CoQ levels are reduced, and a high succinate/α-ketoglutarate ratio leads to increased histone methylation. A CoQ analog rescues mon's bloodless phenotype. These results demonstrate that mitochondrial metabolism is a key output of a lineage transcription factor that drives cell fate decisions in the early blood lineage. Supported by ORIP (R24OD017870), NIGMS, NHLBI, and NCI.
Acoustofluidic Rotational Tweezing Enables High-Speed Contactless Morphological Phenotyping of Zebrafish Larvae
Chen et al., Nature Communications. 2021.
https://pubmed.ncbi.nlm.nih.gov/33602914/
These authors demonstrate an acoustofluidic rotational tweezing platform that enables contactless, high-speed, 3D multispectral imaging and digital reconstruction of zebrafish larvae for quantitative phenotypic analysis. The acoustic-induced polarized vortex streaming achieves contactless and rapid (~1 s/rotation) rotation of zebrafish larvae enabling multispectral imaging of the zebrafish body and internal organs. They developed a 3D reconstruction pipeline that yields accurate 3D models based on the multi-view images for quantitative evaluation. With its contactless nature and advantages in speed and automation, the acoustofluidic rotational tweezing system has the potential to be a valuable asset for developmental biology and pre-clinical drug development in pharmacology. Supported by ORIP (R43OD024963), NCI, and NIGMS.
Intra-Strain Genetic Variation of Platyfish (Xiphophorus maculatus) Strains Determines Tumorigenic Trajectory
Lu et al., Frontiers in Genetics . 2020.
https://www.frontiersin.org/articles/10.3389/fgene.2020.562594/full
Xiphophorus interspecies hybrids represent a valuable model system to study heritable tumorigenesis. Although the ancestors of the two X. maculatus parental lines, Jp163 A and Jp163 B, were siblings produced by the same mother, backcross interspecies hybrid progeny between X. hellerii and X. maculatus Jp163 A develop spontaneous melanoma initiating at the dorsal fin due to a regulator encoded by the X. maculatus genome; the backcross hybrid progeny with X. hellerii or X. couchianus and Jp163 B exhibit melanoma on their flanks. Comparative genomic analyses revealed genetic differences are associated with pathways highlighting fundamental cellular functions. Disruption of these baselines may give rise to spontaneous or inducible tumorigenesis. Supported by ORIP (R24OD011120), NCI, and NIGMS.