Selected Grantee Publications
- Clear All
- 86 results found
- Other Animal Models
- Aquatic Vertebrate Models
Proteomic Profiling of Extracellular Vesicles Isolated From Plasma and Peritoneal Exudate in Mice Induced by Crotalus scutulatus scutulatus Crude Venom and Its Purified Cysteine-Rich Secretory Protein (Css-CRiSP)
Reyes et al., Toxins (Basel). 2023.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10467150/
Toxins in viperid snakes can induce clinically heterogeneous effects, but most viper venoms are composed of only 10 main protein families. Researchers investigated the proteome expression profile of extracellular vesicles isolated from biofluid samples from male and female mice after injection with crude venom and cysteine-rich secretory proteins. They reported changes in the expression of proteins involved in cell adhesion, cytoskeleton rearrangement, signal transduction, immune responses, and vesicle-mediated transports. This work could be applied in future efforts for early detection and assessment of local effects. Supported by ORIP (P40OD010960), NIGMS, and NHLBI.
Photoreceptor Disc Incisures Form as an Adaptive Mechanism Ensuring the Completion of Disc Enclosure
Lewis et al., eLife. 2023.
https://elifesciences.org/articles/89160
The first steps of vision take place within a stack of tightly packed disc-shaped membranes, or discs, located in the outer segment compartment of photoreceptor cells. In rod photoreceptors, discs are enclosed inside the outer segment and contain deep indentations in their rims called incisures. This presence of incisures has been documented in several species, yet their role remains elusive. This study demonstrated that incisures are formed only after discs become completely enclosed. At the earliest stage of their formation, discs are not round but rather are highly irregular in shape and resemble expanding lamellipodia. In genetically modified mice and frogs, researchers measuring outer segment protein abundances found that incisure size is determined by the molar ratio between peripherin-2, a disc rim protein critical for the process of disc enclosure, and rhodopsin, the major structural component of disc membranes. High perpherin-2-to-rhodopsin ratio causes an increase in incisure size and structural complexity; low ratio precludes incisure formation. They propose a model whereby normal rods express a modest excess of peripherin-2 over the amount required for complete disc enclosure to ensure that this important step of disc formation is accomplished. Once the disc is enclosed, the excess peripherin-2 incorporates into the rim to form an incisure. Supported by ORIP (P40OD010997, R24OD030008).
Early Detection of Pseudocapillaria tomentosa by qPCR in Four Lines of Zebrafish, Danio rerio (Hamilton 1882)
Schuster et al., Journal of Fish Diseases. 2023.
https://onlinelibrary.wiley.com/doi/10.1111/jfd.13773
The intestinal nematode Pseudocapillaria tomentosa in zebrafish (Danio rerio) causes profound intestinal lesions, emaciation, and death and is a promoter of a common intestinal cancer in zebrafish. This nematode has been detected in an estimated 15% of zebrafish laboratories. Adult worms are readily detected about 3 weeks after exposure by either histology or wet mount preparations of the intestine, and larval worms are inconsistently observed in fish before this time. A quantitative PCR (qPCR) test was recently developed to detect the worm in fish and water, and here the authors determined that the test on zebrafish intestines was effective for earlier detection. Supported by ORIP (R24OD010998, P40OD011021).
Ion Channel Function in Translational Bovine Gallbladder Cholangiocyte Organoids: Establishment and Characterization of a Novel Model System
Nagao and Ambrosini et al., Frontiers in Veterinary Science. 2023.
https://pubmed.ncbi.nlm.nih.gov/37303723/
The study of biliary physiology and pathophysiology has long been hindered by the lack of in vitro models that accurately reflect the complex functions of the biliary system. Recent advancements in 3D organoid technology may offer a promising solution to this issue. Bovine gallbladder models have recently gained attention in the investigation of human diseases due to their remarkable similarities in physiology and pathophysiology to the human gallbladder. In this study, the investigators successfully established and characterized bovine gallbladder cholangiocyte organoids (GCOs) that retain key characteristics of the gallbladder in vivo, including stem cell properties and proliferative capacity. Notably, their findings demonstrate that these organoids exhibit specific and functional cystic fibrosis transmembrane conductance regulator activity. These bovine GCOs represent a valuable tool for studying the physiology and pathophysiology of the gallbladder with human significance. Supported by ORIP (K01OD030515, R21OD031903).
High-Resolution Genomes of Multiple Xiphophorus Species Provide New Insights into Microevolution, Hybrid Incompatibility, and Epistasis
Lu et al., Genome Research. 2023.
https://pubmed.ncbi.nlm.nih.gov/37147111/
Existing Xiphophorus genome assemblies are not at the chromosomal level and are prone to sequence gaps, hindering advancement of evolutionary, comparative, and translational biomedical studies. Investigators assembled high-quality chromosome-level genome assemblies for three distantly related Xiphophorus species. They found that expanded gene families and positively selected genes associated with live bearing. Positively selected gene families were enriched in nonpolymorphic transposable elements, suggesting that dispersal has accompanied the evolution of the genes, possibly by incorporating new regulatory elements. The investigators also characterized interspecific polymorphisms, structural variants, and polymorphic transposable element insertions and assessed their association to interspecies hybridization-induced gene expression dysregulation related to specific disease states in humans. Supported by ORIP (R24OD011120, R24OD031467, R24OD011198) and NCI.
Leukocyte Tyrosine Kinase (Ltk) Is the Mendelian Determinant of the Axolotl Melanoid Color Variant
Kabangu et al., Genes. 2023.
https://www.mdpi.com/2073-4425/14/4/904
The diversity of color patterns among amphibians is largely explained by the differentiation of a few pigment cell types during development. Mexican axolotls have a variety of color phenotypes, from leucistic to highly melanistic. The melanoid axolotl is a Mendelian variant characterized by large numbers of melanophores, fewer xanthophores, and no iridophores. Studies of melanoid were influential in developing the single-origin hypothesis of pigment cell development, proposing that all three pigment cell types derive from a common progenitor cell, with pigment metabolites playing potential roles in directing the development of organelles that define different pigment cell types. Xanthine dehydrogenase (XDH) activity was identified as a mechanism for the permissive differentiation of melanophores at the expense of xanthophores and iridophores. The authors used bulked segregant RNA-Seq (including a region on chromosome 14q) to screen the axolotl genome for melanoid candidate genes and identify the associated locus. The region 14q contains gephyrin (Gphn), an enzyme that catalyzes the synthesis of the molybdenum cofactor that is required for XDH activity, and Ltk, a cell surface signaling receptor required for iridophore differentiation in zebrafish. Wild-type Ltk crispants present similar pigment phenotypes to melanoid, strongly implicating Ltk as the melanoid locus. The results support the idea of direct fate specification of pigment cells, as well as the single-origin hypothesis of pigment cell development. Supported by ORIP (P40OD019794, R24OD010435, R24OD021479).
Effect of the Snake Venom Component Crotamine on Lymphatic Endothelial Cell Responses and Lymph Transport
Si et al., Microcirculation. 2023.
https://onlinelibrary.wiley.com/doi/10.1111/micc.12775
The pathology of snake envenomation is closely tied to the severity of edema in the tissue surrounding the area of the bite. This study focused on one of the most abundant venom components in North American viper venom, crotamine, and the effects it has on the cells and function of the lymphatic system. The authors found that genes that encode targets of crotamine are highly present in lymphatic tissues and cells and that there is a differential distribution of those genes that correlates with phasic contractile activity. They found that crotamine potentiates calcium flux in human dermal lymphatic endothelial cells in response to stimulation with histamine and shear stress—but not alone—and that it alters the production of nitric oxide in response to shear, as well as changes the level of F-actin polymerization of those same cells. Crotamine alters lymphatic transport of large molecular weight tracers to local lymph nodes and is deposited within the node, mostly in the immediate subcapsular region. Results suggest that snake venom components may have an impact on the function of the lymphatic system and provide new targets for improved therapeutics to treat snakebites. Supported by ORIP (P40OD010960).
Genome Structures Resolve the Early Diversification of Teleost Fishes
Parey et al., Science. 2023.
https://pubmed.ncbi.nlm.nih.gov/36758078/
The early evolution of teleost fishes remains an unanswered question among evolutionary biologists. The three earliest branching clades of crown teleosts are Elopomorpha (e.g., tarpons, eels), Osteoglossomorpha (e.g., arapaima, elephantnose fish), and Clupeocephala (e.g., zebrafish, medaka). Building on recently described genome assemblies in Elopomorpha, the authors explored teleost phylogeny using independent gene sequencing and chromosomal rearrangement phylogenomic approaches. They found that Elopomorpha and Osteoglossomorpha comprise a monophyletic sister group to all other teleosts. This report highlights the value of combining different levels of genome-wide information to solve complex phylogenies and will serve as a basis for new investigations into the genomic and functional evolution of teleosts. Supported by ORIP (R01OD011116).
Production and Characterization of Monoclonal Antibodies to Xenopus Proteins
Horr et al., Development. 2023.
https://pubmed.ncbi.nlm.nih.gov/36789951/
Monoclonal antibodies are powerful and versatile tools that enable the study of proteins in diverse contexts. They are often utilized to assist with identification of subcellular localization and characterization of the function of target proteins of interest. However, because there can be considerable sequence diversity between orthologous proteins in Xenopus and mammals, antibodies produced against mouse or human proteins often do not recognize Xenopus counterparts. To address this issue, the authors refined existing mouse monoclonal antibody production protocols to generate antibodies against Xenopus proteins of interest. Here, they describe several approaches for the generation of useful mouse anti-Xenopus antibodies to multiple Xenopus proteins and their validation in various experimental approaches. Supported by ORIP (R24OD021485, S10OD010645) and NIDCR.
Gigapixel Imaging With a Novel Multi-Camera Array Microscope
Thomson et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.74988
The dynamics of living organisms are organized across many spatial scales. The investigators created assembled a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution, large field-of-view recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, they computationally generated gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This system allows the team to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales (e.g., larval zebrafish, fruit flies, slime mold). Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms. Supported by ORIP (R44OD024879), NIEHS, NCI, and NIBIB.