Selected Grantee Publications
- Clear All
- 76 results found
- Aquatic Vertebrate Models
- Swine Models
Peripherally Mediated Opioid Combination Therapy in Mouse and Pig
Peterson et al., The Journal of Pain. 2025.
https://pubmed.ncbi.nlm.nih.gov/39542192
This study evaluates novel opioid combinations for pain relief with reduced side effects. Researchers investigated loperamide (a μ-opioid agonist) with either oxymorphindole or N‑benzyl-oxymorphindole—both δ-opioid receptor partial agonists—in mice (male and female) and pigs (male). These combinations produced synergistic analgesia across species without causing adverse effects or respiratory depression. The therapies significantly reduced hypersensitivity in post-injury models, outperforming morphine alone. These findings suggest that peripherally acting opioid combinations can offer effective, safer alternatives for pain management, potentially lowering opioid misuse and side effects. This approach could improve clinical strategies for treating chronic and acute pain with limited central opioid exposure. Supported by ORIP (T32OD010993), NHLBI, and NIDA.
Single-Cell Transcriptomics Predict Novel Potential Regulators of Acute Epithelial Restitution in the Ischemia-Injured Intestine
Rose et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2025.
https://pubmed.ncbi.nlm.nih.gov/39853303
Following ischemia in the small intestine, early barrier restoration relies on epithelial restitution to reseal the physical barrier and prevent sepsis. Pigs share a similar gastrointestinal anatomy, physiology, and microbiota with humans. Researchers used neonatal and juvenile, 2- to 6-week-old male and female Yorkshire cross pigs to determine upstream regulators of restitution. Single-cell sequencing of ischemia-injured epithelial cells demonstrated two sub-phenotypes of absorptive enterocytes, with one subset presenting a restitution phenotype. Colony-stimulating factor-1 (CSF1) was the only predicted upstream regulator expressed in juvenile jejunum compared with neonatal jejunum. An in vitro scratch wound assay using IPEC-J2 cells showed that BLZ945, a colony-stimulating factor 1 receptor antagonist, inhibited restitution. Ex vivo ischemia-injured neonatal pig jejunum treated with exogenous CSF1 displayed increased barrier function. This study could inform future research focused on developing novel therapeutics for intestinal barrier injury in patients. Supported by ORIP (T32OD011130, K01OD028207), NCATS, NICHD, and NIDDK.
Stat3 Mediates Fyn Kinase-Driven Dopaminergic Neurodegeneration and Microglia Activation
Siddiqui et al., Disease Models & Mechanisms. 2024.
https://pubmed.ncbi.nlm.nih.gov/39641161
The FYN gene is a risk locus for Alzheimer’s disease and several other neurodegenerative disorders. FYN encodes Fyn kinase, and previous studies have shown that Fyn signaling in dopaminergic neurons and microglia plays a role during neurodegeneration. This study investigated Fyn signaling using zebrafish that express a constitutively active Fyn Y531F mutant in neural cells. Activated neural Fyn signaling in the mutant animals resulted in dopaminergic neuron loss and induced inflammatory cytokine expression when compared with controls. Transcriptomic and chemical inhibition analyses revealed that Fyn-driven changes were dependent on the Stat3 and NF-κB signaling pathways, which work synergistically to activate neuronal inflammation and degeneration. This study provides insight into the mechanisms underlying neurodegeneration, identifying Stat3 as a novel effector of Fyn signaling and a potential translational target. Supported by ORIP (R24OD020166).
Temperature-Dependent Alterations in the Proteome of the Emergent Fish Pathogen Edwardsiella piscicida
Jacobsen et al., Journal of Fish Diseases. 2024.
https://pubmed.ncbi.nlm.nih.gov/39304982
Reported outbreaks of Edwardsiella piscicida, a bacterial pathogen among cultured and wild fish, have been steadily increasing over the past decade in tandem with climate change–mediated increases in water temperatures. The capacity for this increasingly prevalent fish pathogen to infect and cause disease in mammals is important to understand. Researchers examined the role of temperature on the virulence of E. piscicida to understand its pathogenesis in the context of climate warming trends and better understand its zoonotic potential. Findings revealed downregulation of virulence-related proteins, such as flagellar and Type VI secretion system proteins, at colder temperatures. These findings highlight the potential environmental factors influencing the pathogen’s threat to aquaculture and public health. Supported by ORIP (S10OD026918, T32OD011147).
Extended Survival of 9- and 10-Gene-Edited Pig Heart Xenografts With Ischemia Minimization and CD154 Costimulation Blockade-Based Immunosuppression
Chaban et al., The Journal of Heart and Lung Transplantation. 2024.
https://pubmed.ncbi.nlm.nih.gov/39097214
Heart transplantations are severely constrained from the shortage of available organs derived from human donors. Xenotransplantation of hearts from gene-edited (GE) pigs is a promising way to address this problem. Researchers evaluated GE pig hearts with varying knockouts and human transgene insertions. Human transgenes are introduced to mitigate important physiological incompatibilities between pig cells and human blood. Using a baboon heterotopic cardiac transplantation model, one female and seven male specific-pathogen-free baboons received either a 3-GE, 9-GE, or 10-GE pig heart with an immunosuppression regimen targeting CD40/CD154. Early cardiac xenograft failure with complement activation and multifocal infarcts were observed with 3-GE pig hearts, whereas 9- and 10-GE pig hearts demonstrated successful graft function and prolonged survival. These findings show that one or more transgenes of the 9- and 10-GE pig hearts with CD154 blockade provide graft protection in this preclinical model. Supported by ORIP (U42OD011140) and NIAID.
Fetal Bone Engraftment Reconstitutes the Immune System in Pigs With Severe Combined Immunodeficiency
Monarch et al., Lab Animal. 2024.
https://pubmed.ncbi.nlm.nih.gov/39289566/
A valuable preclinical model for studying immune-related pathologies is the severe combined immunodeficiency (SCID) pig through modification of recombination activating gene 2 (RAG2) and interleukin-2 receptor-γ (IL2RG). RAG2/IL2RG double knockout SCID pigs are hard to maintain for breeding and long-term studies because their life span is 8 weeks or less. The researchers investigated fetal allograft transplantation derived from immunocompetent pigs as a strategy for reconstituting the immune system of SCID pigs and promoting survival. Following fetal allograft, SCID pigs demonstrated increased levels of lymphocytes. SCID pigs that received the fetal allograft demonstrated improved body condition and extended life span compared with nonrecipient SCID littermates. This study demonstrates the potential use of fetal allograft transplantation to extend the life span of SCID pigs to breeding age to reduce the resources used to maintain this model for biomedical research. Supported by ORIP (U42OD011140, R21OD027062).
Impaired Skeletal Development by Disruption of Presenilin-1 in Pigs and Generation of Novel Pig Models for Alzheimer's Disease
Uh et al., Journal of Alzheimer's Disease. 2024.
https://pubmed.ncbi.nlm.nih.gov/39177593/
This study explored the effects of presenilin 1 (PSEN1) disruption on vertebral malformations in male and female PSEN1 mutant pigs. Researchers observed significant skeletal impairments and early deaths in pigs with a PSEN1 null mutation, mirroring phenotypes seen in mouse models of Alzheimer’s disease (AD). This porcine model provides valuable insights into pathological hallmarks of PSEN1 mutations in AD, offering a robust platform of therapeutic exploration. The findings establish pigs as an essential translational model for AD, enabling advanced studies on pathophysiology and treatment development for human skeletal and neurological conditions. Supported by ORIP (U42OD011140), NHLBI, NIA, NIAID.
Gene Editing of Pigs to Control Influenza A Virus Infections
Kwon et al., Emerging Microbes & Infections. 2024.
https://pubmed.ncbi.nlm.nih.gov/39083026/
A reduction in the efficacy of vaccines and antiviral drugs for combating infectious diseases in agricultural animals has been observed. Generating genetically modified livestock species to minimize susceptibility to infectious diseases is of interest as an alternative approach. The researchers developed a homozygous transmembrane serine protease 2 (TMPRSS2) knockout (KO) porcine model to investigate resistance to two influenza A virus (IAV) subtypes, H1N1 and H3N2. TMPRSS2 KO pigs demonstrated diminished nasal cavity viral shedding, lower viral burden, and reduced microscopic lung pathology compared with wild-type (WT) pigs. In vitro culturing of primary bronchial epithelial cells (PBECs) demonstrated delayed viral replication in TMPRSS2 KO pigs compared with WT pigs. This study demonstrates the potential use of genetically modified pigs to mitigate IAV infections in pigs and limit transmission to humans. Supported by ORIP (U42OD011140), NHLBI, NIAID, and NIGMS.
Large Animal Models Enhance the Study of Crypt-Mediated Epithelial Recovery From Prolonged Intestinal Ischemia Reperfusion Injury
McKinney-Aguirre et al., American Journal of Physiology-Gastrointestinal and Liver Physiology. 2024.
https://pubmed.ncbi.nlm.nih.gov/39404771/
Intestinal ischemia and reperfusion injury (IRI) is a severe pathological alteration that compromises the intestinal epithelial barrier, causing bacterial translocation, shock, sepsis, and potentially death. Preclinical research for IRI has focused on utilizing murine models, but mice demonstrate key anatomical and physiological intestinal differences from humans, such as tissue enzymes, intestinal permeability, and hypoxic response pathways. The researchers compared a 3-hour IRI porcine model to a 3-hour IRI murine model to reveal which demonstrated a stronger translational capacity. Both models demonstrated crypt damage, but only the porcine model showed recovery-associated crypt death expansion and re-epithelialization. At 72 hours post-IRI, mouse mortality was 84.6%, whereas porcine mortality was 0%. A porcine model would be more reliable for future translational studies focused on understanding IRI mechanisms for diagnosis and therapy advancements. Supported by ORIP (T32OD011130, K01OD010199, R03OD026598) and NIDDK.
Amphiphilic Shuttle Peptide Delivers Base Editor Ribonucleoprotein to Correct the CFTR R553X Mutation in Well-Differentiated Airway Epithelial Cells
Kulhankova et al., Nucleic Acids Research. 2024.
https://academic.oup.com/nar/article/52/19/11911/7771564?login=true
Effective translational delivery strategies for base editing applications in pulmonary diseases remain a challenge because of epithelial cells lining the intrapulmonary airways. The researchers demonstrated that the endosomal leakage domain (ELD) plays a crucial role in gene editing ribonucleoprotein (RNP) delivery activity. A novel shuttle peptide, S237, was created by flanking the ELD with poly glycine-serine stretches. Primary airway epithelia with the cystic fibrosis transmembrane conductance regulator (CFTR) R533X mutation demonstrated restored CFTR function when treated with S237-dependent ABE8e-Cas9-NG RNP. S237 outperformed the S10 shuttle peptide at Cas9 RNP delivery in vitro and in vivo using primary human bronchial epithelial cells and transgenic green fluorescent protein neonatal pigs. This study highlights the efficacy of S237 peptide–mediated RNP delivery and its potential as a therapeutic tool for the treatment of cystic fibrosis. Supported by ORIP (U42OD027090, U42OD026635), NCATS, NHGRI, NHLBI, NIAID, NIDDK, and NIGMS.