Selected Grantee Publications
- Clear All
- 14 results found
- Invertebrate Models
- 2025
- 2023
De Novo and Inherited Variants in DDX39B Cause a Novel Neurodevelopmental Syndrome
Booth et al., Brain. 2025.
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awaf035/8004980?login=true
DDX39B is a core component of the TRanscription-EXport (TREX) super protein complex. Recent studies have highlighted the important role of TREX subunits in neurodevelopmental disorders. Researchers describe a cohort of six individuals (male and female) from five families with disease-causing de novo missense variants or inherited splice-altering variants in DDX39B. Three individuals in the cohort are affected by mild to severe developmental delay, hypotonia, history of epilepsy or seizure, short stature, skeletal abnormalities, variable dysmorphic features, and microcephaly. Using a combination of patient genomic and transcriptomic data, in silico modeling, in vitro assays, and in vivo Drosophila and zebrafish models, this study implicates disruption of DDX39B in a novel neurodevelopmental disorder called TREX-complex-related neurodevelopmental syndrome. Supported by ORIP (U54OD030165).
A New Drosophila melanogaster Research Resource: CRISPR-Induced Mutations for Clonal Analysis of Fourth Chromosome Genes
Weasner et al., G3 (Bethesda). 2025.
https://pubmed.ncbi.nlm.nih.gov/39804955
The fruit fly, Drosophila melanogaster, shares approximately 60% of its genes with human homologs and is an excellent model organism for studying mechanisms underlying human health and disease. However, the fourth chromosome of this organism is challenging to study because of the lack of genetic resources. This study presents a new resource—the Fourth Chromosome Resource Project—for studying the fourth chromosome of the fruit fly and expanding the understanding of gene function and disease mechanisms. Using gene editing approaches, researchers generated and characterized 119 mutations in 62 fourth chromosome genes, including 84 predicted null alleles and 29 in-frame deletions. Phenotypic assessments included tests for lethality, sterility, and visible traits. Many stable mutant stocks were submitted into public repositories in the United States and Japan for research purposes. Supported by ORIP (P40OD018537, R24OD028242) and NHGRI.
Suppressing APOE4-Induced Neural Pathologies by Targeting the VHL-HIF Axis
Jiang et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39874294
The ε4 variant of human apolipoprotein E (APOE4) is a major genetic risk factor for Alzheimer’s disease and increases mortality and neurodegeneration. Using Caenorhabditis elegans and male APOE-expressing mice, researchers determined that the Von Hippel-Lindau 1 (VHL-1) protein is a key modulator of APOE4-induced neural pathologies. This study demonstrated protective effects of the VHL-1 protein; the loss of this protein reduced APOE4-associated neuronal and behavioral damage by stabilizing hypoxia-inducible factor 1 (HIF-1), a transcription factor that protects against cellular stress and injury. Genetic VHL-1 inhibition also mitigated cerebral vascular injury and synaptic damage in APOE4-expressing mice. These findings suggest that targeting the VHL–HIF axis in nonproliferative tissues could reduce APOE4-driven mortality and neurodegeneration. Supported by ORIP (R24OD010943, R21OD032463, P40OD010440), NHGRI, NIA, and NIGMS.
A Collection of Split-Gal4 Drivers Targeting Conserved Signaling Ligands in Drosophila
Ewen-Campen et al., G3 (Bethesda). 2025.
https://pubmed.ncbi.nlm.nih.gov/39569452
A modest number of highly conserved signaling pathways are known to generate a broad range of responses in multicellular animals, including mammals. How this remarkable feat is achieved is not well understood. Investigators developed and characterized a collection of genetic resources, called knock-in split-Gal4 lines, that target ligands from highly conserved signaling pathways in development and biological processes, including Notch, Hedgehog, fibroblast growth factor, epidermal growth factor, and transforming growth factor β. These Drosophila lines are useful in identifying tissues that co-express ligands of interest, genetically manipulating specific cell populations, and elucidating potential crosstalk among different conserved pathways. These resources are highly valuable for studying conserved intercellular signaling pathways relevant to human health and disease. Supported by ORIP (R24OD026435, R24OD031952, P40OD018537) and NIGMS.
A Defining Member of the New Cysteine-Cradle Family Is an aECM Protein Signalling Skin Damage in C. elegans
Sonntag et al., PLoS Genetics. 2025.
https://pubmed.ncbi.nlm.nih.gov/40112269
The rigid yet flexible apical extracellular matrix (aECM), known as the cuticle, works with the underlying epidermal layer to create a protective physical barrier against injury or infection in the roundworm Caenorhabditis elegans. The aECM communicates crucial signals to the epidermis based on environmental insults, allowing it to trigger immune activation and combat potential threats. This study investigated the molecular link between aECM and immune response in C. elegans. Investigators found that a secreted protein called SPIA-1 acts as an extracellular signal activator of cuticle damage and mediates immune response. This study sheds light on how epithelial cells detect and respond to damage. Supported by ORIP (R21OD033663, P40OD010440) and NIGMS.
Lipid Droplets and Peroxisomes Are Co-Regulated to Drive Lifespan Extension in Response to Mono-Unsaturated Fatty Acids
Papsdorf et al., Nature Cell Biology. 2023.
https://www.nature.com/articles/s41556-023-01136-6
Investigators studied the mechanism by which mono-unsaturated fatty acids (MUFAs) extend longevity. They found that MUFAs upregulated the number of lipid droplets in fat storage tissues of Caenorhabditis elegans, and increased lipid droplets are necessary for MUFA-induced longevity and predicted remaining lifespan. Lipidomics data revealed that MUFAs modify the ratio of membrane lipids and ether lipids, which leads to decreased lipid oxidation in middle-aged individuals. MUFAs also upregulate peroxisome number. A targeted screen revealed that induction of both lipid droplets and peroxisomes is optimal for longevity. This study opens new interventive avenues to delay aging. Supported by ORIP (S10OD025004, S10OD028536, P40OD010440), NIA, NCCIH, NIDDK, and NHGRI.
Allelic Strengths of Encephalopathy-Associated UBA5 Variants Correlate Between In Vivo and In Vitro Assays
Pan et al., eLife. 2023.
https://pubmed.ncbi.nlm.nih.gov/37502976/
The UBA5 gene is associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder, in humans. The link between UBA5 variants and severity of DEE44, however, is not established. Investigators developed humanized fly models carrying a series of patient UBA5 variants. These flies showed differences in survival rates, developmental progress, life span, and neurological well-being. The severity of these defects correlated strongly with functional defects of UBA5 variants, allowing the classification of UBA5 loss-of-function variants into mild, intermediate, and severe allelic strengths in patients. This study provides resources for systematic investigation of the mechanistic link between UBA5 variants and DEE44 and for developing diagnostic approaches. Supported by ORIP (R24OD022005, R24OD031447, U54OD035865) and NCATS.
Increased Collective Migration Correlates With Germline Stem Cell Competition in a Basal Chordate
Fentress and De Tomaso et al., PLOS One. 2023.
https://pubmed.ncbi.nlm.nih.gov/37903140/
Cell competition is a process that compares the relative fitness of progenitor cells and results in healthier cells, contributing a higher proportion to the final tissue composition. Investigators are studying cell competition in a novel model organism, the colonial ascidian, Botryllus schlosseri. They demonstrated that winner germline stem cells show enhanced migratory ability to chemotactic cues ex vivo and that enhanced migration correlates with both expression of the Notch ligand, Jagged, and cluster size. The ability to study conserved aspects of cell migration makes Botryllus an excellent model for future studies on competition, chemotaxis, and collective cell migration. Supported by ORIP (R21OD030520) and NIGMS.
Body Stiffness Is a Mechanical Property That Facilitates Contact-Mediated Mate Recognition in Caenorhabditis elegans
Weng et al., Current Biology. 2023.
https://www.sciencedirect.com/science/article/abs/pii/S0960982223009272
Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Chemical cues have been extensively studied as sensory cures of mate recognition, whereas the role of mechanical cues is largely unknown. Investigators studied the link of the hypodermis and body stiffness with mate recognition and mating efficiency in the worm C. elegans. They found that worm males assess attractiveness of potential mates though contact-mediated cues determined by species, sex, and developmental stages of the hypodermis. Body stiffness maintained by a group of cuticular collagens is critical for mate recognition and mating efficiency. This study suggests the important role of mechanosensory cues in mate recognition and provides a platform for mechanistically studying social behavior. Supported by ORIP (R24OD023041, P40OD010440) and NINDS.
A Defect in Mitochondrial Fatty Acid Synthesis Impairs Iron Metabolism and Causes Elevated Ceramide Levels
Dutta et al., Nature Metabolism. 2023.
https://pubmed.ncbi.nlm.nih.gov/37653044/
Human mitochondrial enoyl coenzyme A reductase (Mecr), required for the last step of mitochondrial fatty acid synthesis (mtFAS), is linked to pediatric-onset neurodegeneration, but with unknown mechanisms. Researchers investigated phenotypes of mecr mutants in Drosophila and human-derived fibroblasts. They found that loss of function of Mecr in the whole body resulted in a defect in Fe-S cluster biogenesis and increased iron levels, leading to elevated ceramide levels and lethality in flies. Similar elevated ceramide levels and impaired iron homeostasis were observed human-derived fibroblasts with Mecr deficiency. Neuronal loss of Mecr led to progressive neurodegeneration in flies. This study pointed out a mechanistic link between mtFAS and neurodegeneration through Mecr. Supported by ORIP (R24OD022005, R24OD031447), NICHD, and NINDS.