Selected Grantee Publications
- Clear All
- 6 results found
- Invertebrate Models
- Microscopy
- Preservation
Mechanical Force of Uterine Occupation Enables Large Vesicle Extrusion From Proteostressed Maternal Neurons
Wang et al., eLife. 2024.
https://pubmed.ncbi.nlm.nih.gov/39255003
This study investigates how mechanical forces from uterine occupation influence large vesicle extrusion (exopher production) from proteostressed maternal neurons in Caenorhabditis elegans. Exophers, previously found to remove damaged cellular components, are poorly understood. Researchers demonstrate that mechanical stress significantly increases exopher release from touch receptor neurons (i.e., ALMR) during peak reproductive periods, coinciding with egg production. Genetic disruptions reducing reproductive activity suppress exopher extrusion, whereas interventions promoting egg retention enhance it. These findings reveal that reproductive and mechanical factors modulate neuronal stress responses, providing insight on how systemic physiological changes affect neuronal health and proteostasis, with broader implications for reproductive-neuronal interactions. Supported by ORIP (R24OD010943, P40OD010440), NIA, and NIGMS.
The Splicing Factor hnRNPL Demonstrates Conserved Myocardial Regulation Across Species and Is Altered in Heart Failure
Draper et al., FEBS Letters. 2024.
https://pubmed.ncbi.nlm.nih.gov/39300280/
The 5-year mortality rate of heart failure (HF) is approximately 50%. Gene splicing, induced by splice factors, is a post-transcriptional modification of mRNA that may regulate pathological remodeling in HF. Researchers investigated the role of the splice factor heterogenous nuclear ribonucleoprotein-L (hnRNPL) in cardiomyopathy. hnRNPL protein expression is significantly increased in a male C57BL/6 transaortic constriction–induced HF mouse model and in clinical samples derived from canine or human HF patients. Cardiac-restricted knockdown of the hnRNPL homolog in Drosophila revealed systolic dysfunction and reduced life span. This study demonstrates a conserved cross-species role of hnRNPL in regulating heart function. Supported by ORIP (K01OD028205) and NHLBI.
Conduction-Dominated Cryomesh for Organism Vitrification
Guo et al., Advanced Science. 2024.
https://pubmed.ncbi.nlm.nih.gov/38018294/
Vitrification-based cryopreservation via cryomesh is a promising approach for maintaining biodiversity, health care, and sustainable food production via long-term preservation of biological systems. Here, researchers conducted a series of experiments aimed at optimizing the cooling and rewarming rates of cryomesh to increase the viability of various cryopreserved biosystems. They found that vitrification was significantly improved by increasing thermal conductivity, reducing mesh wire diameter and pore size, and minimizing the nitrogen vapor barrier of the conduction-dominated cryomesh. Cooling rates increased twofold to tenfold in a variety of biosystems. The conduction-dominated cryomesh improved the cryopreservation outcomes of coral larvae, Drosophila embryos, and zebrafish embryos by vitrification. These findings suggest that the conduction-dominated cryomesh can improve vitrification in such biosystems for biorepositories, agriculture and aquaculture, and research. Supported by ORIP (R24OD028444, R21OD028758, R24OD034063, R21OD028214), NIDDK, and NIGMS.
Gigapixel Imaging With a Novel Multi-Camera Array Microscope
Thomson et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.74988
The dynamics of living organisms are organized across many spatial scales. The investigators created assembled a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution, large field-of-view recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, they computationally generated gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This system allows the team to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales (e.g., larval zebrafish, fruit flies, slime mold). Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms. Supported by ORIP (R44OD024879), NIEHS, NCI, and NIBIB.
Rapid Joule Heating Improves Vitrification Based Cryopreservation
Zhan et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33546-9
Cryopreservation by vitrification is an effective approach for long-term preservation of biosystems, but effective vitrification often requires high concentrations of cryoprotective agent (CPA), which can be toxic. The investigators described a joule heating–based platform technology for rapid rewarming of biosystems, which allows the use of low concentrations of CPA. They demonstrated the success of this platform in cryopreservation of three model systems: adherent cells, Drosophila melanogaster embryos, and rat kidney slices with low CPA concentrations. This work provides a general solution to cryopreserve a broad spectrum of cells, tissues, organs, and organisms. Supported by ORIP (R21OD028758), NIDDK, NHLBI, and NIGMS.
Cryopreservation Method for Drosophila melanogaster Embryos
Zhan et al., Nature Communications. 2021.
https://www.nature.com/articles/s41467-021-22694-z
Drosophila melanogaster is a premier model for biomedical research. However, preservation of Drosophila stocks is labor intensive and costly. Researchers at University of Minnesota reported an efficient method for cryopreservation by optimizing key steps including embryo permeabilization and cryoprotectant agent loading. This method resulted in more than 10% of embryos developing into fertile adults after cryopreservation for 25 distinct strains from different sources. The further optimization and wide adoption of this protocol will solve the long-standing issue in reliably preserving Drosophila stocks and will significantly impact Drosophila as a model organism for biomedical research. Supported by ORIP (R21OD028758) and NIGMS.