Selected Grantee Publications
- Clear All
- 5 results found
- Invertebrate Models
- Genetics
- 2025
De Novo and Inherited Variants in DDX39B Cause a Novel Neurodevelopmental Syndrome
Booth et al., Brain. 2025.
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awaf035/8004980?login=true
DDX39B is a core component of the TRanscription-EXport (TREX) super protein complex. Recent studies have highlighted the important role of TREX subunits in neurodevelopmental disorders. Researchers describe a cohort of six individuals (male and female) from five families with disease-causing de novo missense variants or inherited splice-altering variants in DDX39B. Three individuals in the cohort are affected by mild to severe developmental delay, hypotonia, history of epilepsy or seizure, short stature, skeletal abnormalities, variable dysmorphic features, and microcephaly. Using a combination of patient genomic and transcriptomic data, in silico modeling, in vitro assays, and in vivo Drosophila and zebrafish models, this study implicates disruption of DDX39B in a novel neurodevelopmental disorder called TREX-complex-related neurodevelopmental syndrome. Supported by ORIP (U54OD030165).
A New Drosophila melanogaster Research Resource: CRISPR-Induced Mutations for Clonal Analysis of Fourth Chromosome Genes
Weasner et al., G3 (Bethesda). 2025.
https://pubmed.ncbi.nlm.nih.gov/39804955
The fruit fly, Drosophila melanogaster, shares approximately 60% of its genes with human homologs and is an excellent model organism for studying mechanisms underlying human health and disease. However, the fourth chromosome of this organism is challenging to study because of the lack of genetic resources. This study presents a new resource—the Fourth Chromosome Resource Project—for studying the fourth chromosome of the fruit fly and expanding the understanding of gene function and disease mechanisms. Using gene editing approaches, researchers generated and characterized 119 mutations in 62 fourth chromosome genes, including 84 predicted null alleles and 29 in-frame deletions. Phenotypic assessments included tests for lethality, sterility, and visible traits. Many stable mutant stocks were submitted into public repositories in the United States and Japan for research purposes. Supported by ORIP (P40OD018537, R24OD028242) and NHGRI.
Suppressing APOE4-Induced Neural Pathologies by Targeting the VHL-HIF Axis
Jiang et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39874294
The ε4 variant of human apolipoprotein E (APOE4) is a major genetic risk factor for Alzheimer’s disease and increases mortality and neurodegeneration. Using Caenorhabditis elegans and male APOE-expressing mice, researchers determined that the Von Hippel-Lindau 1 (VHL-1) protein is a key modulator of APOE4-induced neural pathologies. This study demonstrated protective effects of the VHL-1 protein; the loss of this protein reduced APOE4-associated neuronal and behavioral damage by stabilizing hypoxia-inducible factor 1 (HIF-1), a transcription factor that protects against cellular stress and injury. Genetic VHL-1 inhibition also mitigated cerebral vascular injury and synaptic damage in APOE4-expressing mice. These findings suggest that targeting the VHL–HIF axis in nonproliferative tissues could reduce APOE4-driven mortality and neurodegeneration. Supported by ORIP (R24OD010943, R21OD032463, P40OD010440), NHGRI, NIA, and NIGMS.
A Collection of Split-Gal4 Drivers Targeting Conserved Signaling Ligands in Drosophila
Ewen-Campen et al., G3 (Bethesda). 2025.
https://pubmed.ncbi.nlm.nih.gov/39569452
A modest number of highly conserved signaling pathways are known to generate a broad range of responses in multicellular animals, including mammals. How this remarkable feat is achieved is not well understood. Investigators developed and characterized a collection of genetic resources, called knock-in split-Gal4 lines, that target ligands from highly conserved signaling pathways in development and biological processes, including Notch, Hedgehog, fibroblast growth factor, epidermal growth factor, and transforming growth factor β. These Drosophila lines are useful in identifying tissues that co-express ligands of interest, genetically manipulating specific cell populations, and elucidating potential crosstalk among different conserved pathways. These resources are highly valuable for studying conserved intercellular signaling pathways relevant to human health and disease. Supported by ORIP (R24OD026435, R24OD031952, P40OD018537) and NIGMS.
A Defining Member of the New Cysteine-Cradle Family Is an aECM Protein Signalling Skin Damage in C. elegans
Sonntag et al., PLoS Genetics. 2025.
https://pubmed.ncbi.nlm.nih.gov/40112269
The rigid yet flexible apical extracellular matrix (aECM), known as the cuticle, works with the underlying epidermal layer to create a protective physical barrier against injury or infection in the roundworm Caenorhabditis elegans. The aECM communicates crucial signals to the epidermis based on environmental insults, allowing it to trigger immune activation and combat potential threats. This study investigated the molecular link between aECM and immune response in C. elegans. Investigators found that a secreted protein called SPIA-1 acts as an extracellular signal activator of cuticle damage and mediates immune response. This study sheds light on how epithelial cells detect and respond to damage. Supported by ORIP (R21OD033663, P40OD010440) and NIGMS.