Selected Grantee Publications
- Clear All
- 3 results found
- Invertebrate Models
- S10 [SIG, BIG, HEI]
Lipid Droplets and Peroxisomes Are Co-Regulated to Drive Lifespan Extension in Response to Mono-Unsaturated Fatty Acids
Papsdorf et al., Nature Cell Biology. 2023.
https://www.nature.com/articles/s41556-023-01136-6
Investigators studied the mechanism by which mono-unsaturated fatty acids (MUFAs) extend longevity. They found that MUFAs upregulated the number of lipid droplets in fat storage tissues of Caenorhabditis elegans, and increased lipid droplets are necessary for MUFA-induced longevity and predicted remaining lifespan. Lipidomics data revealed that MUFAs modify the ratio of membrane lipids and ether lipids, which leads to decreased lipid oxidation in middle-aged individuals. MUFAs also upregulate peroxisome number. A targeted screen revealed that induction of both lipid droplets and peroxisomes is optimal for longevity. This study opens new interventive avenues to delay aging. Supported by ORIP (S10OD025004, S10OD028536, P40OD010440), NIA, NCCIH, NIDDK, and NHGRI.
The Drosophila Chemokine-Like Orion Bridges Phosphatidylserine and Draper in Phagocytosis of Neurons
Ji et al., PNAS. 2023.
https://pubmed.ncbi.nlm.nih.gov/37276397/
Degenerating neurons can be cleared by phagocytosis triggered by “eat-me” signal phosphatidylserine (PS) and mediated by the engulfment receptor Draper (Drpr), yet the process is poorly understood. Investigators used several Drosophila models to study dendrite degeneration and demonstrated that the fly chemokine-like protein Orion binds to PS and mediates interactions between PS and Drpr to enable phagocytosis. This study identifies a link between immunomodulatory proteins and phagocytosis of neurons and reveals conserved mechanisms of clearing degenerating neurons. Supported by ORIP (R24OD031953, R21OD023824, S10OD018516) and NINDS.
PIKFYVE Inhibition Mitigates Disease in Models of Diverse Forms of ALS
Hung et al., Cell . 2023.
https://doi.org/10.1016/j.cell.2023.01.005
Investigators showed that pharmacological suppression of PIKFYVE activity reduces pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of amyotrophic lateral sclerosis (ALS). Upon PIKFYVE inhibition, exocytosis is activated to transport aggregation-prone proteins out of the cells, a process that does not require stimulating macroautophagy or the ubiquitin-proteosome system. These findings suggest therapeutic potential to manage multiple forms of ALS. Supported by ORIP (S10OD021553) and NINDS.