Selected Grantee Publications
Increased Collective Migration Correlates With Germline Stem Cell Competition in a Basal Chordate
Fentress and De Tomaso et al., PLOS One. 2023.
https://pubmed.ncbi.nlm.nih.gov/37903140/
Cell competition is a process that compares the relative fitness of progenitor cells and results in healthier cells, contributing a higher proportion to the final tissue composition. Investigators are studying cell competition in a novel model organism, the colonial ascidian, Botryllus schlosseri. They demonstrated that winner germline stem cells show enhanced migratory ability to chemotactic cues ex vivo and that enhanced migration correlates with both expression of the Notch ligand, Jagged, and cluster size. The ability to study conserved aspects of cell migration makes Botryllus an excellent model for future studies on competition, chemotaxis, and collective cell migration. Supported by ORIP (R21OD030520) and NIGMS.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.