Selected Grantee Publications
- Clear All
- 4 results found
- Invertebrate Models
- nigms
- Imaging
Suppressing APOE4-Induced Neural Pathologies by Targeting the VHL-HIF Axis
Jiang et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39874294
The ε4 variant of human apolipoprotein E (APOE4) is a major genetic risk factor for Alzheimer’s disease and increases mortality and neurodegeneration. Using Caenorhabditis elegans and male APOE-expressing mice, researchers determined that the Von Hippel-Lindau 1 (VHL-1) protein is a key modulator of APOE4-induced neural pathologies. This study demonstrated protective effects of the VHL-1 protein; the loss of this protein reduced APOE4-associated neuronal and behavioral damage by stabilizing hypoxia-inducible factor 1 (HIF-1), a transcription factor that protects against cellular stress and injury. Genetic VHL-1 inhibition also mitigated cerebral vascular injury and synaptic damage in APOE4-expressing mice. These findings suggest that targeting the VHL–HIF axis in nonproliferative tissues could reduce APOE4-driven mortality and neurodegeneration. Supported by ORIP (R24OD010943, R21OD032463, P40OD010440), NHGRI, NIA, and NIGMS.
A Collection of Split-Gal4 Drivers Targeting Conserved Signaling Ligands in Drosophila
Ewen-Campen et al., G3 (Bethesda). 2025.
https://pubmed.ncbi.nlm.nih.gov/39569452
A modest number of highly conserved signaling pathways are known to generate a broad range of responses in multicellular animals, including mammals. How this remarkable feat is achieved is not well understood. Investigators developed and characterized a collection of genetic resources, called knock-in split-Gal4 lines, that target ligands from highly conserved signaling pathways in development and biological processes, including Notch, Hedgehog, fibroblast growth factor, epidermal growth factor, and transforming growth factor β. These Drosophila lines are useful in identifying tissues that co-express ligands of interest, genetically manipulating specific cell populations, and elucidating potential crosstalk among different conserved pathways. These resources are highly valuable for studying conserved intercellular signaling pathways relevant to human health and disease. Supported by ORIP (R24OD026435, R24OD031952, P40OD018537) and NIGMS.
A Defining Member of the New Cysteine-Cradle Family Is an aECM Protein Signalling Skin Damage in C. elegans
Sonntag et al., PLoS Genetics. 2025.
https://pubmed.ncbi.nlm.nih.gov/40112269
The rigid yet flexible apical extracellular matrix (aECM), known as the cuticle, works with the underlying epidermal layer to create a protective physical barrier against injury or infection in the roundworm Caenorhabditis elegans. The aECM communicates crucial signals to the epidermis based on environmental insults, allowing it to trigger immune activation and combat potential threats. This study investigated the molecular link between aECM and immune response in C. elegans. Investigators found that a secreted protein called SPIA-1 acts as an extracellular signal activator of cuticle damage and mediates immune response. This study sheds light on how epithelial cells detect and respond to damage. Supported by ORIP (R21OD033663, P40OD010440) and NIGMS.
Cryopreservation Method for Drosophila melanogaster Embryos
Zhan et al., Nature Communications. 2021.
https://www.nature.com/articles/s41467-021-22694-z
Drosophila melanogaster is a premier model for biomedical research. However, preservation of Drosophila stocks is labor intensive and costly. Researchers at University of Minnesota reported an efficient method for cryopreservation by optimizing key steps including embryo permeabilization and cryoprotectant agent loading. This method resulted in more than 10% of embryos developing into fertile adults after cryopreservation for 25 distinct strains from different sources. The further optimization and wide adoption of this protocol will solve the long-standing issue in reliably preserving Drosophila stocks and will significantly impact Drosophila as a model organism for biomedical research. Supported by ORIP (R21OD028758) and NIGMS.