Selected Grantee Publications
- Clear All
- 3 results found
- Invertebrate Models
- niaid
- niams
A Comprehensive Drosophila Resource to Identify Key Functional Interactions Between SARS-CoV-2 Factors and Host Proteins
Guichard et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480566/
To address how interactions between SARS-CoV-2 factors and host proteins affect COVID-19 symptoms, including long COVID, and facilitate developing effective therapies against SARS-CoV-2 infections, researchers reported the generation of a comprehensive set of resources, mainly genetic stocks and a human cDNA library, for studying viral–host interactions in Drosophila. Researchers further demonstrated the utility of these resources and showed that the interaction between NSP8, a SARS-CoV-2 factor, and ATE1 arginyltransferase, a host factor, causes actin arginylation and cytoskeleton disorganization, which may be relevant to several pathogenesis processes (e.g., coagulation, cardiac inflammation, fibrosis, neural damage). Supported by ORIP (R24OD028242, R24OD022005, R24OD031447), NIAID, NICHD, NIGMS, and NINDS.
The Incompetence of Mosquitoes—Can Zika Virus Be Adapted to Infect Culex tarsalis Cells?
Gallichotte et al., mSphere . 2023.
Zika virus (ZIKV) is transmitted between humans by Aedes aegypti mosquitoes. However, the 2015 to 2017 outbreak raised questions regarding the role of Culex species mosquitoes in transmission. Investigators attempted to adapt ZIKV to C. tarsalis by serially passaging the virus on cocultured A. aegypti and C. tarsalis cells to identify viral determinants of species specificity. Next-generation sequencing of cocultured virus passages revealed variants of interest that were engineered into nine recombinant viruses. None of these viruses showed increased infection of Culex cells or mosquitoes. Thus, although ZIKV might infect Culex mosquitoes occasionally, Aedes mosquitoes likely drive transmission and human risk. Supported by ORIP (T32OD010437) and NIAID.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.