Selected Grantee Publications
- Clear All
- 2 results found
- Invertebrate Models
- nia
Mechanical Force of Uterine Occupation Enables Large Vesicle Extrusion From Proteostressed Maternal Neurons
Wang et al., eLife. 2024.
https://pubmed.ncbi.nlm.nih.gov/39255003
This study investigates how mechanical forces from uterine occupation influence large vesicle extrusion (exopher production) from proteostressed maternal neurons in Caenorhabditis elegans. Exophers, previously found to remove damaged cellular components, are poorly understood. Researchers demonstrate that mechanical stress significantly increases exopher release from touch receptor neurons (i.e., ALMR) during peak reproductive periods, coinciding with egg production. Genetic disruptions reducing reproductive activity suppress exopher extrusion, whereas interventions promoting egg retention enhance it. These findings reveal that reproductive and mechanical factors modulate neuronal stress responses, providing insight on how systemic physiological changes affect neuronal health and proteostasis, with broader implications for reproductive-neuronal interactions. Supported by ORIP (R24OD010943, P40OD010440), NIA, and NIGMS.
Lipid Droplets and Peroxisomes Are Co-Regulated to Drive Lifespan Extension in Response to Mono-Unsaturated Fatty Acids
Papsdorf et al., Nature Cell Biology. 2023.
https://www.nature.com/articles/s41556-023-01136-6
Investigators studied the mechanism by which mono-unsaturated fatty acids (MUFAs) extend longevity. They found that MUFAs upregulated the number of lipid droplets in fat storage tissues of Caenorhabditis elegans, and increased lipid droplets are necessary for MUFA-induced longevity and predicted remaining lifespan. Lipidomics data revealed that MUFAs modify the ratio of membrane lipids and ether lipids, which leads to decreased lipid oxidation in middle-aged individuals. MUFAs also upregulate peroxisome number. A targeted screen revealed that induction of both lipid droplets and peroxisomes is optimal for longevity. This study opens new interventive avenues to delay aging. Supported by ORIP (S10OD025004, S10OD028536, P40OD010440), NIA, NCCIH, NIDDK, and NHGRI.