Selected Grantee Publications
- Clear All
- 11 results found
- Invertebrate Models
- nhlbi
- ninds
The Splicing Factor hnRNPL Demonstrates Conserved Myocardial Regulation Across Species and Is Altered in Heart Failure
Draper et al., FEBS Letters. 2024.
https://pubmed.ncbi.nlm.nih.gov/39300280/
The 5-year mortality rate of heart failure (HF) is approximately 50%. Gene splicing, induced by splice factors, is a post-transcriptional modification of mRNA that may regulate pathological remodeling in HF. Researchers investigated the role of the splice factor heterogenous nuclear ribonucleoprotein-L (hnRNPL) in cardiomyopathy. hnRNPL protein expression is significantly increased in a male C57BL/6 transaortic constriction–induced HF mouse model and in clinical samples derived from canine or human HF patients. Cardiac-restricted knockdown of the hnRNPL homolog in Drosophila revealed systolic dysfunction and reduced life span. This study demonstrates a conserved cross-species role of hnRNPL in regulating heart function. Supported by ORIP (K01OD028205) and NHLBI.
Cdk8/CDK19 Promotes Mitochondrial Fission Through Drp1 Phosphorylation and Can Phenotypically Suppress Pink1 Deficiency in Drosophila
Liao et al., Nature Communications. 2024.
https://www.nature.com/articles/s41467-024-47623-8
Pink1 is a mitochondrial kinase implicated in Parkinson’s disease and is conserved among humans, rodents, and flies. In this study, researchers found that Cdk8 in Drosophila (i.e., the orthologue of vertebrate CDK8 and CDK19) promotes the phosphorylation of Drp1 (i.e., a protein required for mitochondrial fission) at the same residue as Pink1. Cdk8 is expressed in both the cytoplasm and nucleus, and neuronal loss of Cdk8 reduces fly life span and causes bang sensitivity and elongated mitochondria in both muscles and neurons. Overexpression of Cdk8 suppresses elevated levels of reactive oxygen species, mitochondrial dysmorphology, and behavioral defects in flies with low levels of Pink1. These findings suggest that Cdk8 regulates Drp1-mediated mitochondrial fission in a similar manner as Pink1 and may contribute to the development of Parkinson’s disease. Supported by ORIP (R24OD022005, R24OD031447, P40OD018537, P40OD010949), NICHD, and NINDS.
De Novo Variants in FRYL Are Associated With Developmental Delay, Intellectual Disability, and Dysmorphic Features
Pan et al., The American Journal of Human Genetics. 2024.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00039-9
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans, and its functions in mammals are largely unknown. Investigators report 13 individuals who have de novo heterozygous variants in FRYL and one individual with a heterozygous FRYL variant that is not confirmed to be de novo. The individuals present with developmental delay; intellectual disability; dysmorphic features; and other congenital anomalies in cardiovascular, skeletal, gastrointestinal, renal, and urogenital systems. Using fruit flies, investigators provide evidence that haploinsufficiency in FRYL likely underlies a disorder in humans with developmental and neurological symptoms. Supported by ORIP (U54OD030165), NHLBI, NICHD, and NCATS.
Body Stiffness Is a Mechanical Property That Facilitates Contact-Mediated Mate Recognition in Caenorhabditis elegans
Weng et al., Current Biology. 2023.
https://www.sciencedirect.com/science/article/abs/pii/S0960982223009272
Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Chemical cues have been extensively studied as sensory cures of mate recognition, whereas the role of mechanical cues is largely unknown. Investigators studied the link of the hypodermis and body stiffness with mate recognition and mating efficiency in the worm C. elegans. They found that worm males assess attractiveness of potential mates though contact-mediated cues determined by species, sex, and developmental stages of the hypodermis. Body stiffness maintained by a group of cuticular collagens is critical for mate recognition and mating efficiency. This study suggests the important role of mechanosensory cues in mate recognition and provides a platform for mechanistically studying social behavior. Supported by ORIP (R24OD023041, P40OD010440) and NINDS.
A Defect in Mitochondrial Fatty Acid Synthesis Impairs Iron Metabolism and Causes Elevated Ceramide Levels
Dutta et al., Nature Metabolism. 2023.
https://pubmed.ncbi.nlm.nih.gov/37653044/
Human mitochondrial enoyl coenzyme A reductase (Mecr), required for the last step of mitochondrial fatty acid synthesis (mtFAS), is linked to pediatric-onset neurodegeneration, but with unknown mechanisms. Researchers investigated phenotypes of mecr mutants in Drosophila and human-derived fibroblasts. They found that loss of function of Mecr in the whole body resulted in a defect in Fe-S cluster biogenesis and increased iron levels, leading to elevated ceramide levels and lethality in flies. Similar elevated ceramide levels and impaired iron homeostasis were observed human-derived fibroblasts with Mecr deficiency. Neuronal loss of Mecr led to progressive neurodegeneration in flies. This study pointed out a mechanistic link between mtFAS and neurodegeneration through Mecr. Supported by ORIP (R24OD022005, R24OD031447), NICHD, and NINDS.
A Comprehensive Drosophila Resource to Identify Key Functional Interactions Between SARS-CoV-2 Factors and Host Proteins
Guichard et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480566/
To address how interactions between SARS-CoV-2 factors and host proteins affect COVID-19 symptoms, including long COVID, and facilitate developing effective therapies against SARS-CoV-2 infections, researchers reported the generation of a comprehensive set of resources, mainly genetic stocks and a human cDNA library, for studying viral–host interactions in Drosophila. Researchers further demonstrated the utility of these resources and showed that the interaction between NSP8, a SARS-CoV-2 factor, and ATE1 arginyltransferase, a host factor, causes actin arginylation and cytoskeleton disorganization, which may be relevant to several pathogenesis processes (e.g., coagulation, cardiac inflammation, fibrosis, neural damage). Supported by ORIP (R24OD028242, R24OD022005, R24OD031447), NIAID, NICHD, NIGMS, and NINDS.
The Drosophila Chemokine-Like Orion Bridges Phosphatidylserine and Draper in Phagocytosis of Neurons
Ji et al., PNAS. 2023.
https://pubmed.ncbi.nlm.nih.gov/37276397/
Degenerating neurons can be cleared by phagocytosis triggered by “eat-me” signal phosphatidylserine (PS) and mediated by the engulfment receptor Draper (Drpr), yet the process is poorly understood. Investigators used several Drosophila models to study dendrite degeneration and demonstrated that the fly chemokine-like protein Orion binds to PS and mediates interactions between PS and Drpr to enable phagocytosis. This study identifies a link between immunomodulatory proteins and phagocytosis of neurons and reveals conserved mechanisms of clearing degenerating neurons. Supported by ORIP (R24OD031953, R21OD023824, S10OD018516) and NINDS.
PIKFYVE Inhibition Mitigates Disease in Models of Diverse Forms of ALS
Hung et al., Cell . 2023.
https://doi.org/10.1016/j.cell.2023.01.005
Investigators showed that pharmacological suppression of PIKFYVE activity reduces pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of amyotrophic lateral sclerosis (ALS). Upon PIKFYVE inhibition, exocytosis is activated to transport aggregation-prone proteins out of the cells, a process that does not require stimulating macroautophagy or the ubiquitin-proteosome system. These findings suggest therapeutic potential to manage multiple forms of ALS. Supported by ORIP (S10OD021553) and NINDS.
Rapid Joule Heating Improves Vitrification Based Cryopreservation
Zhan et al., Nature Communications. 2022.
https://www.doi.org/10.1038/s41467-022-33546-9
Cryopreservation by vitrification is an effective approach for long-term preservation of biosystems, but effective vitrification often requires high concentrations of cryoprotective agent (CPA), which can be toxic. The investigators described a joule heating–based platform technology for rapid rewarming of biosystems, which allows the use of low concentrations of CPA. They demonstrated the success of this platform in cryopreservation of three model systems: adherent cells, Drosophila melanogaster embryos, and rat kidney slices with low CPA concentrations. This work provides a general solution to cryopreserve a broad spectrum of cells, tissues, organs, and organisms. Supported by ORIP (R21OD028758), NIDDK, NHLBI, and NIGMS.
De Novo Variants in EMC1 Lead to Neurodevelopmental Delay and Cerebellar Degeneration and Affect Glial Function in Drosophila
Chung et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac053
Variants in EMC1, which encodes a subunit of the endoplasmic reticulum (ER)–membrane protein complex (EMC), are associated with developmental delay in children. Functional consequences of these variants are poorly understood. The investigators identified de novo variants in EMC1 in three children affected by global developmental delay, hypotonia, seizures, visual impairment, and cerebellar atrophy. They demonstrated in Drosophila that these variants are loss-of-function alleles and lead to lethality when expressed in glia but not in neurons. This work suggests the causality of EMC variants in disease. Supported by ORIP (R24OD022005, R24OD031447), NINDS, and NICHD.