Selected Grantee Publications
- Clear All
- 2 results found
- Invertebrate Models
- nhgri
- 2022
Two Neuronal Peptides Encoded from a Single Transcript Regulate Mitochondrial Complex III in Drosophila
Bosch et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.82709
Transcripts with small open-reading frames (smORFs) are underrepresented in genome annotations. Functions of peptides encoded by smORFs are poorly understood. The investigators systematically characterized human-conserved smORF genes in Drosophila and found two peptides, Sloth1 and Sloth2, that are highly expressed in neurons. They showed that Sloth1 and Sloth2 are paralogs with high sequence similarity but are not functionally redundant. Loss of either peptide resulted in lethality, impaired mitochondrial function, and neurodegeneration. This work suggests the value of phenotypic analysis of smORFs using Drosophila as a model. Supported by ORIP (R24OD019847), NHGRI, and NIGMS.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.