Selected Grantee Publications
- Clear All
- 61 results found
- Invertebrate Models
- Other Animal Models
Canine Reference Genome Accuracy Impacts Variant Calling: Lessons Learned from Investigating Embryonic Lethal Variant
Kinsey et al., Animal Genetics. 2022.
https://www.doi.org/10.1111/age.13241
With increasingly affordable whole-genome sequencing, hundreds of canine genomes now can be analyzed for embryonic lethal mutations. Investigators examined whole-genome sequence data from 675 dogs of both sexes to investigate for variants with missing homozygosity and high predicted impact. They identified 45 likely embryonic lethal mutations in 32 genes but found that all but one of those were labeled incorrectly and were artifacts associated with a widely utilized canine reference genome. This effect is a major obstacle to studies focusing on loci with high heterozygosity. The investigators propose that by using newer, multiple reference genomes, researchers could reduce artifacts and identify variants more accurately. Supported by ORIP (K01OD027051, K01OD019912).
De Novo Variants in EMC1 Lead to Neurodevelopmental Delay and Cerebellar Degeneration and Affect Glial Function in Drosophila
Chung et al., Human Molecular Genetics. 2022.
https://www.doi.org/10.1093/hmg/ddac053
Variants in EMC1, which encodes a subunit of the endoplasmic reticulum (ER)–membrane protein complex (EMC), are associated with developmental delay in children. Functional consequences of these variants are poorly understood. The investigators identified de novo variants in EMC1 in three children affected by global developmental delay, hypotonia, seizures, visual impairment, and cerebellar atrophy. They demonstrated in Drosophila that these variants are loss-of-function alleles and lead to lethality when expressed in glia but not in neurons. This work suggests the causality of EMC variants in disease. Supported by ORIP (R24OD022005, R24OD031447), NINDS, and NICHD.
Promoting Validation and Cross-Phylogenetic Integration in Model Organism Research
Cheng et al., Disease Models & Mechanisms. 2022.
https://www.doi.org/10.1242/dmm.049600
Model organisms are essential for biomedical research and therapeutic development, but translation of such research to the clinic is low. The authors summarized discussions from an NIH virtual workshop series, titled “Validation of Animal Models and Tools for Biomedical Research,” held from 2020 to 2021. They described challenges and opportunities for developing and integrating tools and resources and provided suggestions for improving the rigor, validation, reproducibility, and translatability of model organism research. Supported by ORIP (R01OD011116, R24OD031447, R03OD030597, R24OD018559, R24OD017870, R24OD026591, R24OD022005, U42OD026645, U42OD012210, U54OD030165, UM1OD023221, P51OD011107), NIAMS, NIDDK, NIGMS, NHGRI, and NINDS.
American Alligators Are Capable of West Nile Virus Amplification, Mosquito Infection and Transmission
Byas et al., Virology. 2022.
https://www.doi.org/10.1016/j.virol.2022.01.009
West Nile virus (WNV) overwintering is poorly understood and likely multifactorial. Interest in alligators as a potential amplifying host arose when it was shown that they develop viremias theoretically sufficient to infect mosquitoes. Researchers examined potential ways in which alligators may contribute to the natural ecology of WNV. They experimentally demonstrated that alligators are capable of WNV amplification with subsequent mosquito infection and transmission capability, that WNV-infected mosquitoes readily infect alligators, and that water can serve as a source of infection for alligators but does not easily serve as an intermediate means for transmission between birds and alligators. These findings indicate potential mechanisms for maintenance of WNV outside of the primary bird–mosquito transmission cycle. Supported by ORIP (T32OD010437) and NIAID.
Expression, Activity, and Regulation of Phosphorylating Enzymes in Tissues and Cells Relevant to HIV-1 Sexual Transmission
Hu et al., AIDS Research and Human Retroviruses. 2022.
https://www.doi.org/10.1089/AID.2020.0250
Phosphorylating enzymes (PEs) are critical for activating nucleoside/nucleotide reverse transcriptase inhibitors (e.g., tenofovir [TFV]), but limited information is available about the expression of PEs in the female genital tract and colon tissue. Investigators compared the mRNA expression of seven PEs involved in metabolism of TFV in cervicovaginal and colon tissues. This work involved human, pigtailed macaque, and rabbit tissues; human cervicovaginal epithelial cell lines; T cell lines; and primary CD4+ T cells. Taken together, this study suggests that TFV activation differs among immune cells and local tissues under varying conditions. Additionally, the variability of PE expression levels found across species provides critical information to assist with the interpretation of data obtained using these animal models. Supported by ORIP (P51OD010425) and NIAID.
Negative Inotropic Mechanisms of β-cardiotoxin in Cardiomyocytes by Depression of Myofilament ATPase Activity without Activation of the Classical β-Adrenergic Pathway
Lertwanakarn et al., Scientific Reports. 2021.
https://www.nature.com/articles/s41598-021-00282-x
Beta-cardiotoxin (β-CTX) from the king cobra venom (Ophiophagus hannah) was previously proposed as a novel β-adrenergic blocker. However, the involvement of β-adrenergic signaling by this compound has never been elucidated. The objectives of this study were to investigate the underlying mechanisms of β-CTX as a β-blocker and its association with the β-adrenergic pathway. Healthy Sprague Dawley rats were used for cardiomyocytes isolation. In summary, the negative inotropic mechanism of β-CTX was discovered. β-CTX exhibits an atypical β-blocker mechanism. These properties of β-CTX may benefit in developing a novel agent aid to treat hypertrophic cardiomyopathy. Supported by ORIP (P40OD010960) and NHLBI.
Multiplexed Drug-Based Selection and Counterselection Genetic Manipulations in Drosophila
Matinyan et al., Cell Reports. 2021.
https://www.cell.com/cell-reports/pdf/S2211-1247(21)01147-5.pdf
Many highly efficient methods exist which enable transgenic flies to contribute to diagnostics and therapeutics for human diseases. In this study, researchers describe a drug-based genetic platform with four selection and two counterselection markers, increasing transgenic efficiency by more than 10-fold compared to established methods in flies. Researchers also developed a plasmid library to adapt this technology to other model organisms. This highly efficient transgenic approach significantly increases the power of not only Drosophila melanogaster but many other model organisms for biomedical research. Supported by ORIP (P40OD018537, P40OD010949, R21OD022981), NCI, NHGRI, NIGMS, and NIMH.
A Symphony of Destruction: Dynamic Differential Fibrinogenolytic Toxicity by Rattlesnake (Crotalus and Sistrurus) Venoms
Seneci et al., Comparative Biochemistry and Physiology Part C. 2021.
https://pubmed.ncbi.nlm.nih.gov/33766656/
This study adopts rattlesnakes as a model group to investigate the evolutionary history of venom coagulotoxicity in the context of phylogenetics, natural history, and biology. Venom-induced clotting of human plasma and fibrinogen was determined and mapped onto the rattlesnake phylogenetic tree to reconstruct the evolution of coagulotoxicity across the group. Results indicate that venom phenotype is often independent of phylogenetic relationships in rattlesnakes, suggesting the importance of diet and/or other environmental variables. This study is the most comprehensive effort to date to characterize the evolutionary and biological aspects of coagulotoxins in rattlesnake venom. Further research at finer taxonomic levels is recommended. Supported by ORIP (P40OD010960).
Cryopreservation Method for Drosophila melanogaster Embryos
Zhan et al., Nature Communications. 2021.
https://www.nature.com/articles/s41467-021-22694-z
Drosophila melanogaster is a premier model for biomedical research. However, preservation of Drosophila stocks is labor intensive and costly. Researchers at University of Minnesota reported an efficient method for cryopreservation by optimizing key steps including embryo permeabilization and cryoprotectant agent loading. This method resulted in more than 10% of embryos developing into fertile adults after cryopreservation for 25 distinct strains from different sources. The further optimization and wide adoption of this protocol will solve the long-standing issue in reliably preserving Drosophila stocks and will significantly impact Drosophila as a model organism for biomedical research. Supported by ORIP (R21OD028758) and NIGMS.
Biological Activities of a New Crotamine-like Peptide from Crotalus oreganus helleri on C2C12 and CHO Cell Lines, and Ultrastructural Changes on Motor Endplate and Striated Muscle
Salazar et al., Toxicon. 2020.
https://pubmed.ncbi.nlm.nih.gov/33065200/
Crotamine and crotamine-like peptides are non-enzymatic polypeptides found in high concentration in the Crotalus genus venom. Helleramine was isolated and purified from the venom of the rattlesnake, Crotalus oreganus helleri. Purified helleramine increased intracellular Ca2+ in Chinese Hamster Ovary (CHO) cell line, inhibited cell viability of C2C12 (immortalized skeletal myoblast) and promoted early apoptosis and cell death. Skeletal muscle harvested from mice 24 hours after helleramine injection showed contracted myofibrils and profound vacuolization, with loss of plasmatic and basal membrane integrity. The effects of helleramine provide evidence of myotoxic activities of crotamine-like peptides and their possible role in crotalid envenoming. Supported by ORIP (P40OD010960).