Selected Grantee Publications
- Clear All
- 56 results found
- Invertebrate Models
- Swine Models
Body Stiffness Is a Mechanical Property That Facilitates Contact-Mediated Mate Recognition in Caenorhabditis elegans
Weng et al., Current Biology. 2023.
https://www.sciencedirect.com/science/article/abs/pii/S0960982223009272
Body stiffness is a mechanical property that facilitates contact-mediated mate recognition in Caenorhabditis elegans. Chemical cues have been extensively studied as sensory cures of mate recognition, whereas the role of mechanical cues is largely unknown. Investigators studied the link of the hypodermis and body stiffness with mate recognition and mating efficiency in the worm C. elegans. They found that worm males assess attractiveness of potential mates though contact-mediated cues determined by species, sex, and developmental stages of the hypodermis. Body stiffness maintained by a group of cuticular collagens is critical for mate recognition and mating efficiency. This study suggests the important role of mechanosensory cues in mate recognition and provides a platform for mechanistically studying social behavior. Supported by ORIP (R24OD023041, P40OD010440) and NINDS.
A Defect in Mitochondrial Fatty Acid Synthesis Impairs Iron Metabolism and Causes Elevated Ceramide Levels
Dutta et al., Nature Metabolism. 2023.
https://pubmed.ncbi.nlm.nih.gov/37653044/
Human mitochondrial enoyl coenzyme A reductase (Mecr), required for the last step of mitochondrial fatty acid synthesis (mtFAS), is linked to pediatric-onset neurodegeneration, but with unknown mechanisms. Researchers investigated phenotypes of mecr mutants in Drosophila and human-derived fibroblasts. They found that loss of function of Mecr in the whole body resulted in a defect in Fe-S cluster biogenesis and increased iron levels, leading to elevated ceramide levels and lethality in flies. Similar elevated ceramide levels and impaired iron homeostasis were observed human-derived fibroblasts with Mecr deficiency. Neuronal loss of Mecr led to progressive neurodegeneration in flies. This study pointed out a mechanistic link between mtFAS and neurodegeneration through Mecr. Supported by ORIP (R24OD022005, R24OD031447), NICHD, and NINDS.
A Comprehensive Drosophila Resource to Identify Key Functional Interactions Between SARS-CoV-2 Factors and Host Proteins
Guichard et al., Cell Reports. 2023.
https://pubmed.ncbi.nlm.nih.gov/37480566/
To address how interactions between SARS-CoV-2 factors and host proteins affect COVID-19 symptoms, including long COVID, and facilitate developing effective therapies against SARS-CoV-2 infections, researchers reported the generation of a comprehensive set of resources, mainly genetic stocks and a human cDNA library, for studying viral–host interactions in Drosophila. Researchers further demonstrated the utility of these resources and showed that the interaction between NSP8, a SARS-CoV-2 factor, and ATE1 arginyltransferase, a host factor, causes actin arginylation and cytoskeleton disorganization, which may be relevant to several pathogenesis processes (e.g., coagulation, cardiac inflammation, fibrosis, neural damage). Supported by ORIP (R24OD028242, R24OD022005, R24OD031447), NIAID, NICHD, NIGMS, and NINDS.
The Drosophila Chemokine-Like Orion Bridges Phosphatidylserine and Draper in Phagocytosis of Neurons
Ji et al., PNAS. 2023.
https://pubmed.ncbi.nlm.nih.gov/37276397/
Degenerating neurons can be cleared by phagocytosis triggered by “eat-me” signal phosphatidylserine (PS) and mediated by the engulfment receptor Draper (Drpr), yet the process is poorly understood. Investigators used several Drosophila models to study dendrite degeneration and demonstrated that the fly chemokine-like protein Orion binds to PS and mediates interactions between PS and Drpr to enable phagocytosis. This study identifies a link between immunomodulatory proteins and phagocytosis of neurons and reveals conserved mechanisms of clearing degenerating neurons. Supported by ORIP (R24OD031953, R21OD023824, S10OD018516) and NINDS.
A LGR5 Reporter Pig Model Closely Resembles Human Intestine for Improved Study of Stem Cells in Disease
Schaaf et al., The FASEB Journal. 2023.
https://faseb.onlinelibrary.wiley.com/doi/10.1096/fj.202300223R
The constant epithelial regeneration in the intestine is the sole responsibility of intestinal epithelial stem cells (ISCs), which reside deep in the intestinal crypt structures. To effectively study ISCs, tools to identify this cell population are necessary. This study validates ISC isolation in a new porcine Leucine Rich Repeat Containing G Protein–Coupled Receptor 5 (LGR5) reporter line and demonstrates the use of these pigs as a novel colorectal cancer model. Overall, this novel porcine model provides critical advancement to the field of translational gastrointestinal research. Supported by ORIP (R21OD019738, K01OD019911), NCI, and NIDDK.
Effects of Acute Femoral Head Ischemia on the Growth Plate and Metaphysis in a Piglet Model of Legg-Calvé-Perthes Disease
Armstrong et al., Osteoarthritis and Cartilage. 2023.
https://pubmed.ncbi.nlm.nih.gov/36696941/
Legg-Calvé-Perthes disease (LCPD) can lead to permanent deformity of the femoral head and premature osteoarthritis, but the underlying cause remains unknown. More work is needed to determine optimal treatment methods for LCPD. Using a piglet model for LCPD, researchers assessed the effects of acute femoral head ischemia on the proximal femoral growth plate and metaphysis. They reported that alterations to the growth plate zones and metaphysis occurred by 2 days post-ischemia and persisted at 7 days post-ischemia. These findings suggest that growth disruption may occur sooner after the onset of ischemia than researchers had hypothesized previously. Supported by ORIP (T32OD010993, K01OD021293), NIAMS, and NCATS.
The Incompetence of Mosquitoes—Can Zika Virus Be Adapted to Infect Culex tarsalis Cells?
Gallichotte et al., mSphere . 2023.
Zika virus (ZIKV) is transmitted between humans by Aedes aegypti mosquitoes. However, the 2015 to 2017 outbreak raised questions regarding the role of Culex species mosquitoes in transmission. Investigators attempted to adapt ZIKV to C. tarsalis by serially passaging the virus on cocultured A. aegypti and C. tarsalis cells to identify viral determinants of species specificity. Next-generation sequencing of cocultured virus passages revealed variants of interest that were engineered into nine recombinant viruses. None of these viruses showed increased infection of Culex cells or mosquitoes. Thus, although ZIKV might infect Culex mosquitoes occasionally, Aedes mosquitoes likely drive transmission and human risk. Supported by ORIP (T32OD010437) and NIAID.
Naturally Occurring Osteochondrosis Latens Lesions Identified by Quantitative and Morphological 10.5 T MRI in Pigs
Armstrong et al., Journal of Orthopaedic Research. 2023.
https://pubmed.ncbi.nlm.nih.gov/35716161/
Juvenile osteochondritis dissecans (JOCD) is a pediatric orthopedic disorder that is associated with pain and gait deficits. JOCD lesions form in the knee, elbow, and ankle joints and can progress to early-onset osteoarthritis. In this study, researchers used a noninvasive magnetic resonance imaging (MRI) method to identify naturally occurring lesions in intact knee and elbow joints of juvenile pigs. This work can be applied to noninvasive identification and monitoring of early JOCD lesions and determination of risk factors that contribute to their progression in children. Supported by ORIP (K01OD021293, T32OD010993), NIAMS, and NIBIB.
PIKFYVE Inhibition Mitigates Disease in Models of Diverse Forms of ALS
Hung et al., Cell . 2023.
https://doi.org/10.1016/j.cell.2023.01.005
Investigators showed that pharmacological suppression of PIKFYVE activity reduces pathology and extends survival of animal models and patient-derived motor neurons representing diverse forms of amyotrophic lateral sclerosis (ALS). Upon PIKFYVE inhibition, exocytosis is activated to transport aggregation-prone proteins out of the cells, a process that does not require stimulating macroautophagy or the ubiquitin-proteosome system. These findings suggest therapeutic potential to manage multiple forms of ALS. Supported by ORIP (S10OD021553) and NINDS.
Gigapixel Imaging With a Novel Multi-Camera Array Microscope
Thomson et al., eLife. 2022.
https://www.doi.org/10.7554/eLife.74988
The dynamics of living organisms are organized across many spatial scales. The investigators created assembled a scalable multi-camera array microscope (MCAM) that enables comprehensive high-resolution, large field-of-view recording from multiple spatial scales simultaneously, ranging from structures that approach the cellular scale to large-group behavioral dynamics. By collecting data from up to 96 cameras, they computationally generated gigapixel-scale images and movies with a field of view over hundreds of square centimeters at an optical resolution of 18 µm. This system allows the team to observe the behavior and fine anatomical features of numerous freely moving model organisms on multiple spatial scales (e.g., larval zebrafish, fruit flies, slime mold). Overall, by removing the bottlenecks imposed by single-camera image acquisition systems, the MCAM provides a powerful platform for investigating detailed biological features and behavioral processes of small model organisms. Supported by ORIP (R44OD024879), NIEHS, NCI, and NIBIB.