Selected Grantee Publications
- Clear All
- 19 results found
- Invertebrate Models
- Aquatic Vertebrate Models
- Imaging
De Novo and Inherited Variants in DDX39B Cause a Novel Neurodevelopmental Syndrome
Booth et al., Brain. 2025.
https://academic.oup.com/brain/advance-article/doi/10.1093/brain/awaf035/8004980?login=true
DDX39B is a core component of the TRanscription-EXport (TREX) super protein complex. Recent studies have highlighted the important role of TREX subunits in neurodevelopmental disorders. Researchers describe a cohort of six individuals (male and female) from five families with disease-causing de novo missense variants or inherited splice-altering variants in DDX39B. Three individuals in the cohort are affected by mild to severe developmental delay, hypotonia, history of epilepsy or seizure, short stature, skeletal abnormalities, variable dysmorphic features, and microcephaly. Using a combination of patient genomic and transcriptomic data, in silico modeling, in vitro assays, and in vivo Drosophila and zebrafish models, this study implicates disruption of DDX39B in a novel neurodevelopmental disorder called TREX-complex-related neurodevelopmental syndrome. Supported by ORIP (U54OD030165).
Differentiation Success of Reprogrammed Cells Is Heterogeneous In Vivo and Modulated by Somatic Cell Identity Memory
Zikmund et al., Stem Cell Reports. 2025.
https://pubmed.ncbi.nlm.nih.gov/40086446
Nuclear reprogramming can change cellular fates, yet reprogramming efficiency is low, and the resulting cell types are often not functional. Researchers used nuclear transfer to Xenopus eggs to follow single cells during reprogramming in vivo. Results showed that the differentiation success of reprogrammed cells varies across cell types and depends on the expression of genes specific to the previous cellular identity. Subsets of reprogramming-resistant cells fail to form functional cell types and undergo cell death or disrupt normal body patterning. Reducing expression levels of genes specific to the cell type of origin leads to better reprogramming and improved differentiation trajectories. This study demonstrates that failing to reprogram in vivo is cell type specific and emphasizes the necessity of minimizing aberrant transcripts of the previous somatic identity for improving reprogramming. Supported by ORIP (R24OD031956).
Enhanced RNA-Targeting CRISPR-Cas Technology in Zebrafish
Moreno-Sánchez et al., Nature Communications. 2025.
https://pubmed.ncbi.nlm.nih.gov/40091120
CRISPR-Cas13 RNA-targeting systems, widely used in basic and applied sciences, have generated controversy because of collateral activity in mammalian cells and mouse models. In this study, researchers optimized transient formulations as ribonucleoprotein complexes or mRNA-gRNA combinations to enhance the CRISPR-RfxCas13d system in zebrafish. Researchers used chemically modified gRNAs to allow more penetrant loss-of-function phenotypes, improve nuclear RNA targeting, and compare different computational models to determine the most accurate prediction of gRNA activity in vivo. Results demonstrate that transient CRISPR-RfxCas13d can effectively deplete endogenous mRNAs in zebrafish embryos without inducing collateral effects, except when targeting extremely abundant and ectopic RNAs. Their findings contribute to CRISPR-Cas technology optimization for RNA targeting in zebrafish through transient approaches and advance in vivo applications. Supported by ORIP (R21OD034161), NICHD, and NIGMS.
Suppressing APOE4-Induced Neural Pathologies by Targeting the VHL-HIF Axis
Jiang et al., PNAS. 2025.
https://pubmed.ncbi.nlm.nih.gov/39874294
The ε4 variant of human apolipoprotein E (APOE4) is a major genetic risk factor for Alzheimer’s disease and increases mortality and neurodegeneration. Using Caenorhabditis elegans and male APOE-expressing mice, researchers determined that the Von Hippel-Lindau 1 (VHL-1) protein is a key modulator of APOE4-induced neural pathologies. This study demonstrated protective effects of the VHL-1 protein; the loss of this protein reduced APOE4-associated neuronal and behavioral damage by stabilizing hypoxia-inducible factor 1 (HIF-1), a transcription factor that protects against cellular stress and injury. Genetic VHL-1 inhibition also mitigated cerebral vascular injury and synaptic damage in APOE4-expressing mice. These findings suggest that targeting the VHL–HIF axis in nonproliferative tissues could reduce APOE4-driven mortality and neurodegeneration. Supported by ORIP (R24OD010943, R21OD032463, P40OD010440), NHGRI, NIA, and NIGMS.
A Collection of Split-Gal4 Drivers Targeting Conserved Signaling Ligands in Drosophila
Ewen-Campen et al., G3 (Bethesda). 2025.
https://pubmed.ncbi.nlm.nih.gov/39569452
A modest number of highly conserved signaling pathways are known to generate a broad range of responses in multicellular animals, including mammals. How this remarkable feat is achieved is not well understood. Investigators developed and characterized a collection of genetic resources, called knock-in split-Gal4 lines, that target ligands from highly conserved signaling pathways in development and biological processes, including Notch, Hedgehog, fibroblast growth factor, epidermal growth factor, and transforming growth factor β. These Drosophila lines are useful in identifying tissues that co-express ligands of interest, genetically manipulating specific cell populations, and elucidating potential crosstalk among different conserved pathways. These resources are highly valuable for studying conserved intercellular signaling pathways relevant to human health and disease. Supported by ORIP (R24OD026435, R24OD031952, P40OD018537) and NIGMS.
A Defining Member of the New Cysteine-Cradle Family Is an aECM Protein Signalling Skin Damage in C. elegans
Sonntag et al., PLoS Genetics. 2025.
https://pubmed.ncbi.nlm.nih.gov/40112269
The rigid yet flexible apical extracellular matrix (aECM), known as the cuticle, works with the underlying epidermal layer to create a protective physical barrier against injury or infection in the roundworm Caenorhabditis elegans. The aECM communicates crucial signals to the epidermis based on environmental insults, allowing it to trigger immune activation and combat potential threats. This study investigated the molecular link between aECM and immune response in C. elegans. Investigators found that a secreted protein called SPIA-1 acts as an extracellular signal activator of cuticle damage and mediates immune response. This study sheds light on how epithelial cells detect and respond to damage. Supported by ORIP (R21OD033663, P40OD010440) and NIGMS.
Stat3 Mediates Fyn Kinase-Driven Dopaminergic Neurodegeneration and Microglia Activation
Siddiqui et al., Disease Models & Mechanisms. 2024.
https://pubmed.ncbi.nlm.nih.gov/39641161
The FYN gene is a risk locus for Alzheimer’s disease and several other neurodegenerative disorders. FYN encodes Fyn kinase, and previous studies have shown that Fyn signaling in dopaminergic neurons and microglia plays a role during neurodegeneration. This study investigated Fyn signaling using zebrafish that express a constitutively active Fyn Y531F mutant in neural cells. Activated neural Fyn signaling in the mutant animals resulted in dopaminergic neuron loss and induced inflammatory cytokine expression when compared with controls. Transcriptomic and chemical inhibition analyses revealed that Fyn-driven changes were dependent on the Stat3 and NF-κB signaling pathways, which work synergistically to activate neuronal inflammation and degeneration. This study provides insight into the mechanisms underlying neurodegeneration, identifying Stat3 as a novel effector of Fyn signaling and a potential translational target. Supported by ORIP (R24OD020166).
The Splicing Factor hnRNPL Demonstrates Conserved Myocardial Regulation Across Species and Is Altered in Heart Failure
Draper et al., FEBS Letters. 2024.
https://pubmed.ncbi.nlm.nih.gov/39300280/
The 5-year mortality rate of heart failure (HF) is approximately 50%. Gene splicing, induced by splice factors, is a post-transcriptional modification of mRNA that may regulate pathological remodeling in HF. Researchers investigated the role of the splice factor heterogenous nuclear ribonucleoprotein-L (hnRNPL) in cardiomyopathy. hnRNPL protein expression is significantly increased in a male C57BL/6 transaortic constriction–induced HF mouse model and in clinical samples derived from canine or human HF patients. Cardiac-restricted knockdown of the hnRNPL homolog in Drosophila revealed systolic dysfunction and reduced life span. This study demonstrates a conserved cross-species role of hnRNPL in regulating heart function. Supported by ORIP (K01OD028205) and NHLBI.
The Effect of Common Paralytic Agents Used for Fluorescence Imaging on Redox Tone and ATP Levels in Caenorhabditis elegans
Morton et al., PLOS One. 2024.
https://pubmed.ncbi.nlm.nih.gov/38669260
Caenorhabditis elegans is a highly valuable model organism in biological research. However, these worms must be paralyzed for most imaging applications, and the effect that common chemical anesthetics may have on the parameters measured—especially biochemical measurements such as cellular energetics and redox tone—is poorly understood. In this study, the authors used two reporters—QUEEN-2m for relative ATP levels and reduction-oxidation–sensitive green fluorescent protein for redox tone—to assess the impact of commonly used chemical paralytics. The results show that all chemical anesthetics at doses required for full paralysis alter redox tone and/or ATP levels, and anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. Therefore, it is important to tailor the use of anesthetics to different endpoints and experimental questions and to develop less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters. Supported by ORIP (P40OD010440, R44OD024963) and NIEHS.
De Novo Variants in FRYL Are Associated With Developmental Delay, Intellectual Disability, and Dysmorphic Features
Pan et al., The American Journal of Human Genetics. 2024.
https://www.cell.com/ajhg/fulltext/S0002-9297(24)00039-9
FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans, and its functions in mammals are largely unknown. Investigators report 13 individuals who have de novo heterozygous variants in FRYL and one individual with a heterozygous FRYL variant that is not confirmed to be de novo. The individuals present with developmental delay; intellectual disability; dysmorphic features; and other congenital anomalies in cardiovascular, skeletal, gastrointestinal, renal, and urogenital systems. Using fruit flies, investigators provide evidence that haploinsufficiency in FRYL likely underlies a disorder in humans with developmental and neurological symptoms. Supported by ORIP (U54OD030165), NHLBI, NICHD, and NCATS.