Assessing Nutrition in Zebrafish

Lauren Pandolfo
Aquatics Facilities Manager

National Institute of Child Health and Development

National Institutes of Health

Facility & System Conditions

- 100,000+ liters broken into four, separate zebrafish systems
- 12% daily water changes
- RO water with added salt

- Mechanical- bead filter
- Biological- sand bed filter
- 20 micron polishing filters
- UV bulbs- 3900 total Watts

Parameter	Typical values
рН	7.0
Conductance (µSiemens/cm)	1000
Dissolved Oxygen (mg/L)	7.3
Alkalinity (mg/L CaCO ₃)	16
Total Hardness (mg/L)	60
Ammonia (mg/L)	<0.02
Nitrite (mg/L)	0.040 - 0.120
Nitrate (mg/L)	30.0 - 37.0

Should we switch the diet of the juvenile fish?

Squirt bottles or Pressure pumps for Flake

- In an effort to improve upon husbandry practices and protocols for the zebrafish, *Danio rerio*, we looked at the effects of a new feeding regiment and diet upon juvenile zebrafish.
- Our previous feeding protocol, FKA (Flake commercial diet + Krill + Artemia), was compared to a proposed feeding protocol, PA (Processed commercial diet + Artemia), to determine any difference in fish development and reproductive success.

^{*}Data and Charts from NCAB AALAS poster presented in 2016 by Charles River Lab Staff Stephen Frederickson, Mark Steinmiller, Tiffany Blaylock, Mike Wisnieski, Daniel Castranova

Artemia is not available- How do we move forward?

- Option 1
 - Deal with the current artemia market cost and availability not stable
 - Company A \$66/can has metal shavings currently halted production
 - If it becomes available again mitigation is possible but at labor cost
 - Company B Premium- expensive unvetted product \$260/can
 - Change from SFB to GSL- too big for fry/juv
 - Low in HUSFA , unknown profile

Option 2

- Replace artemia regime with rotifer regime
- Known and controllable supply and nutrition profile
- Cost controlled

• Option 3

Replace live feed for juveniles and adults with Gemma completely

Artemia Drawbacks

- No dietary nutrition control
 - grown in the wild
 - Nauplii cannot be enriched because they do not consume feed
 - GSL has a lower fatty acid profile than SFB strain
- Increased demand community-wide
- Increased and variable cost of product
- Multiple consecutive years of poor harvest currently
 - Limited supply and availability shortages
 - Varying quality

Current Diet at NIH Central Zebrafish Facility

^{*}Diet Chart Provided by Charles River Lab Staff

^{*}Fish Development Image borrowed from Christian Lawrence

Thank you!

- ORIP and Dr. Klosek
- NIH/NICHD RAMB Dpt.
- Dr. Mat Schech DVM
- Dr. Tannia Clark DVM
- Charles River Laboratories
 - Mike Wisnieski
 - Kristin Merrill
 - Our Amazing Aquatic Staff

