ORIP advances the NIH mission by supporting infrastructure for innovation. This support is focused on research resources, including animal models for human diseases, cutting-edge scientific instrumentation, construction and modernization of research facilities, and research training opportunities for veterinary scientists. Through continued engagement with NIH Institutes, Centers, and Offices and the biomedical research community, ORIP empowers and expands existing programs and develops new initiatives to support NIH research at the forefront of scientific progress.
During the past century, aquatic animal species—including fish (such as zebrafish and Xiphophorus), salamanders (such as Ambystoma), and frogs (such as Xenopus)—have demonstrated their utility as powerful models for studying human development, behavior, genetics, and disease because humans and aquatic species share related genetic information (Figure 1). Because of their short developmental cycles, small sizes, and transparent eggs, aquatic species offer unique advantages to researchers. At the molecular level, researchers can take advantage of orthologous, paralogous, and novel genes and the expression of these genes to obtain information about species-specific evolutionary survival adaptations (fitness). By studying these differences and the preserved commonalities between species, scientists can understand the roles that genes play in adapting to and surviving in the environment. One example is tissue (limb) regeneration in salamanders, a capability lost in humans.

Using aquatic models, researchers can identify functions of specific genes, allowing them to better understand the underlying basis of health and diseases in people. More than 20 Nobel laureates in Medicine or Physiology have used at least one of these species in their research, emphasizing the contribution of these species to the advancement of scientific knowledge. A summary of these and other species’ contributions to medical discoveries can be found at fbresearch.org/medical-advances/nobel-prizes.

The scientific relevance of each species is based on the shared aspects of biology, physiology, and genetics with humans, as well as the opportunities that they offer to create better models of human disease.