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Understanding the molecular basis
of human disease by mapping
across tissues and organisms
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_, From “BIG” genomics data to
understanding of biology and human disease
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- Gene expression

" » Physical PPIs

\!*{ "« Epistatic interactions

» Colocalization
e © Sequence
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e Protein domains

ks« Regulatory binding sites

. Using functional genomics data in human to discover disease genes
- Combining functional genomics with quantitative genetics
- Leveraging the power of model organisms on a systems level



From “Big Data” in functional genomics to
disease-relevant molecular maps
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We need to understand pathways and processes
In a cell- and tissue-specific context
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With Garret Fitzgerald’s and Tilo Grosser’s
groups (Penn), Daniel Chasman (Brigham and
. "' &\ Women’s Hospital, Harvard), Kara Dolinski

| - . ] Greene et al. Nature Genetics, 2015
Casey Greene Aaron Wong Arjun Krishnan (Princeton)



There’s a flood of high-throughput genomic data
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Integrating human tissue-specific networks

1000s of Genomic datasets
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Tissue networks can predict
disease-relevant lineage-specific response
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With Emanuela Ricciotti and Tilo Grosser



NetWAS: Network-based approach
for reprioritizing GWAS results to
|dent|fy disease genes and potential drug targets

Genome-wide association study (GWAS) Is a powerful approach
to catalogue trait-associat ‘

Cases (n=1,000) Controls (n=1,000)
{m:pressthehart} {dnnutmq:rﬁsﬂietralt}
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Low statistical strength

log(p)

| - Low frequency mutations
v
c T - Small effect sizes
Cases 62% 38%
Controls | 49% | 51% . Epistasis

Can we improve GWAS results using tissue-specific networks?

Greene et al. Nature Genetics, 2015



NetWAS: Network-based approach for
reprioritizing GWAS results

Top GWAS hits for a disease — e.g. hypertension —
are potentially enriched for disease genes

Non-significant

Nominally
genes significant genes
Negatives Positives

Case study
- Women’s Genome Health Study

- Three endpoints: systolic (SBP), _
diastolic blood pressure (DBP), and Kidney
hypertension (HTN) diagnosis



NetWAS: Network-based approach for
reprioritizing GWAS results

SBP DBP HTN combined
0.8 0.8 0.8 0.8
Phenotypic _ 0.7 - 0.7 -
. . O
Hypertension disease- 2 0.6 - 0.6 -
genes from OMIM - y 0.5 {{--- 05 1oa]
0.4 - 0.4 -
2.5 - 2.5
Functional n 2.0 - 20 -
o 1.5 1.5
Blood pressure regulatory 3 oo o
genes from GO & 0.5 - 0.5 -
0.0 - 0.0 -
1.5 20 —

Therapeutic ° ;: I 15 -

. . o 5
Antihypertensive drug- $ 0 - 1.0 -
targets from DrugBank = 05 4 05 -

-1.0 - 0.0 -




NetWAS: Network-based approach for

AUC

reprioritizing GWAS results
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. Network-based approach for
reprioritizing GWAS results

GIANT NetWAS Analysis ¥ Download Data About History My Gene Sets (Tribe Login)

% 3  GIANT

Genome-scale Integrated Analysis of gene Networks in Tissues

glant.princeton.edu

Tissue None selected

(e

Tissue-specific Interactions Multi-tissue Analysis NetWAS Analysis

GIANT leverages a tissue-specific gold standard to Beyond questions pertaining to the role of single genes in GIANT can effectively reprioritize functional associations from a
automatically up-weight datasets relevant to a tissue from a single tissues, GIANT also enables examination of changes in genome-wide association study (GWAS) and potentially identify :
large data compendium of diverse tissues and cell-types. The gene function across tissues on a broad scale. Users can ! additional disease-associated genes. The approach, named
resulting functional networks accurately capture tissue-specific compare a gene's functional interaction in different tissues by NetWAS, can be applied to any GWAS study, and does not

functional interactions. selecting the relevant tissues in the dropdown menu. require that the phenotype or disease have any known
associated genes.

Troyanskaya Laboratory - Princeton University



The challenges of studying human disease or
“model systems to the rescue”

Most human diseases are molecularly under-characterized
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r 1. The genes/mechanisms are poorly understood

ii Performing specific genetic experiments is very hard :

There are excellent model systems out there

1. Each model organism/system best suited for studying different
diseases/processes/aspects

2. Genetics Is a lot more tractable

3. There are already genotype-phenotype data available in
primates, mouse, zebrafish, worm, fly, yeast (and cell lines)



Which system to use - that is the guestion!

disease/phenotype
O
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Mapplng diseases and phenotypes IS challenging:

o O

1. Diseases and phenotypes often poorly understood at the molecular
level (e.g. gene-phenotype associations very incomplete)

2. Many-to-many relationships between genetic mutations and
observable phenotypes

3. Even semantically similar phenotypes are differently assayed,
recorded, and annotated across organisms



Linking human disease to model phenotypes
on the molecular level >

Phenotype-
associated

Disease-
associated

genes genes

Wong et al. NAR, 2012, 2015
Park et al. PLOS Comp Biol 2012




How do we evaluate this approach?
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SPhinx | Genets) Phenotypes(s) [

Parkinson's Disease

A synucleinopathy that has a basis in degeneration of the central nervous system that often impairs motor
skills, speech, and other functions. Parkinson disease was first described by James Parkinson in 1817. It is the
second most common neurodegenerative disorder after Alzheimer disease, affecting approximately 1% of the
population over age 50 (Polymeropoulos et al.1996).

Related Phenotypes phenotype

[Mus musculus] cell division polarity variant
[Rattus norvegicus] nucleolus variant

[Caenorhabditis elegans] embryonic polarity variant
[Danio rerio] thermotolerance reduced

reduced levels of glutathione

spindle position orientation defective
[Saccharomyces cerevisiae] early emb.

[Drosophila melanogaster]

sluggish

Parkinson's Disease - [Homo sapiens] Reduced levels of glutathione
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With Kara Dolinski group (Princeton)




Candidate genes for Parkinson’s disease in C. elegans

Gurling Reverse Swim Stretch

T T T T T T | T T
L4440 bcat-1 unc-7y L4440 bcat-1 unc-7 L4440 bcat-1 unc-r
Condition

i

~v—Candicdate-genes-for-Parkinsens-predicted-hased-onworm—-
! dopaminergic neuron network and human GWAS studies
l . example: age-dependent motility defect in BCAT-1 (predominant

branched-chain aminotransferase in the nervous system)
¢ _-_Inhibited by neuronal drug gabapentin (GABA analog) R



IIII “l" Summary: tissue-specific genome-scale
oo view of human biology and disease

%\W A general method can perform tissue-specific data integration into functional
orks

Tissue-specific networks are complementary to quantitative genetics and can
lisease associations and reprioritize GWAS hits

Human diseases and pathways can be linked to best model systems through
nism-specific functional networks
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