Functional exploration of human cancer genomes using flies

Erdem Bangi, Ph.D.

Center for Personalized Cancer Therapeutics (CPCT) Icahn School of Medicine at Mount Sinai, New York NY, USA Cancer is a complex, multigenic disease

Normal epithelial cell

Comprehensive catalogue of tumor genomes by the Cancer Genome Atlas (TCGA)

Metastatic tumor cell

Genomic landscape of colorectal cancer

--~30 colorectal cancer drivers

-- recurrently mutated in colon tumors

-- backed by functional evidence

Genomic landscape of colorectal cancer

WNT p	athway activa	tion:1	79/195 p	oati	ents (92%)																																				
	APC	77%																																								1
	TCF7L2	14%											•									•																				
	AMER1	12%																																								
	AXIN2	7%																																								
	CTNNB1	5%																												•												
	FZD10	0.5%																																								
RTK	/Ras pathway	activa	tion:12	2/19)5 pat	ients	(63%	6)																																		
	KRAS	41%								1																					••					•						
	NRAS	10%								I													I																		1	
	BRAF	10%			I																																					
	ERBB2	7%															•																				•					
	ERBB3	6%																																								
ЫЗК	pathway activ	ation	:104/19	5 pa	tients	s (54%	6)																																			
	РІКЗСА	18%																•						I.												• •						
	PTEN	7%																			I																		•			
	PIK3R1	5%																																								
	IRS2	2%																																								
	IGF2	2%																																								
TGF	β pathway los	s:149/	'195 pat	ient	s (77	%)																																				
	SMAD4	14%																																		•			• •			
	ACVR2A	10%	•			•	I				•									•			•																•			
	TGFBR2	9%																					•																•			
	SMAD2	7%			•										•						•															•			• •			
	ACVR1B	7%	•											•														•													1	
	SMAD3	5%																																			•					
	TGFBR1	3%																																								
P53	pathway loss:	149/19	95 patie	nts	(77%)						 																														
	TP53	52%																																					•	** **	1	j
	ATM	12%															I																	I								
	genetic altera	ition	Ampl	ifica	tion			D	еер С	Delet	tion		n	nRN	A Do	wnre	gulat	ion	m	RNA	Upr	regula	ation	j,	N	lisse	nse l	Mutat	tion		Т	runc	ating	g Mu	itatic	n	i.	nfra	me M	lutat	lion	

Genomic landscape of colorectal cancer

Recurrent mutations i	<u>n 5 pathways</u>	In flies:
Wnt	(92%)	apc ^{IR}
Ras/MAPK	(63%)	dRas ^{G12V} , dEGFR
PI3K	(57%)	pten ^{IR}
TGF-β	(77%)	dSmad4 ^{IR}
TP53	(74%)	p53 ^{IR}

TCGA patients sorted by pathway deregulation status

Modeling the complexity of human colon tumors in Drosophila

195 colon tumor genomes from the TCGA

Tumor phenotypes observed in multigenic models

- -- Proliferation
- -- Multilayering
- -- evasion of apoptosis
- -- evasion of senescence
- -- EMT/Migration
- -- Dissemination to distant sites

Correlating tumor genotype with cancer phenotypes using a diverse set of models

Complex interactions between individual mutations

What about drug response?

Testing drug response using genetically compex models

Most oncology drugs that enter clinical trials fail!

Dissemination to distant sites as a readout for drug response

Intrinsic drug resistance is an emergent property of genetically complex models

No effect with Sorafenib, Everolimus, Cisplatin No therapeutic window with bortezomib due to toxicity

Intrinsic drug resistance is another emergent property of multigenic models

PI3K pathway inhibitors

- -- biomarkers of resistance
- -- resistance mechanism
- -- drug combination
- -- mammalian validation

- -- complexity matters
- -- need a large number models

Next steps

- Questions:
- -- How much complexity is needed?
- -- Fly models as personalized drug discovery tools?

Next generation models

Two upgrades:

-- genes instead of pathways

-- patient specific variants

NT pathway activ	ation:1	79/195	pat	lents	(92%))	1111	15711	1111	5711			*****		19925		152111	11121		11222		52122	11221	12272	11111	21212	1212		12321	11112	20111	100	10111	1111	12151	1111		111/21	11111	
APC	77%																																							
TCF7L2	14%				•																								•		ana a						2444			
AMER1	12%			•	••			•			1			•	•		••	1182				•				•								1100		•				
AXIN2	7%									•			•							•											•									
CTNNB1 FZD10	5% 0.5%					•																								•					•	•				
RTK/Ras pathwa	v activa	tion:1	22/1	95 pa	tients	a (63	(%)																																	
KRAS	41%			-																																				
NRAS	10%																																							
BRAF	10%				61100					1111										111												Ш				100		1116		Intini
ERBB2	7%																1																		1	1111	I.			
ERBB3	6%									1				•											1															
PI3K pathway ac	tivation	104/19	95 p	atient	s (54	%)																																		
PIK3CA	18%																				1			•						100									••	
PTEN	7%								1111												•							İШ	mi				1110							1000
PIK3R1	5%																											Î				Í		1					É 🗌	
IRS2	2%																																							
IGF2	2%				UUII.									11																100								IIIII		
TGFβ pathway le	oss:149/	195 pa	ntier	ts (77	7%)																																			
SMAD4	14%											•		•	•										i III	•											•		• •	1.1
ACVR2A	10%	•	1				I		111	1					•					•	•		I					8						1111				•		
TGFBR2	9%		•												•								•																•	
SMAD2	7%											1			•						1															•				
ACVR1B	7%												•									1					•	1												
SMAD3	5%												•	1											1													•		
TGFBR1	3%							IIII												1111	hlli																		itti	
P53 pathway los	s:149/19	95 pati	ients	s (77%	6)																																			
TP53	52%		• •			•		• •		•		•	•		• •	• •	••••	••		••		•				***	•		• ••			••			•				4.	
ATM	12%				11				ł								•				••			•												•				
genetic alte	ration	Amp	olific	ation			L	Deep	Del	etion			0,	nRN	A Do	wnre	gulati	ion	mł	RNA	Upre	gula	tion		Mi	isser	nse 1	Muta	tion		т	unc	ating	Mut	atior	'n	í.	nfram	e Mu	tation

CPCT Pipeline

Generate high quality tumor genomic profiles

(whole exome, targeted panels, copy number analysis)

Build patient specific fly models

base model

- -- recurrent cancer drivers only
- -- 3-5 genes/patient

personalized model

- -- additional deleterious mutations
- -- up to 10 genes/patient

Drug screening (single agent & combination screens)

--FDA cancer set (62 drugs)

-- Full FDA set (1200 drugs)

Personalized treatment recommendations by the multidisciplinary tumor board

Why use flies?

-- sophisticated genetics

-- conserved epithelia

-- conserved pathways

-- conserved drug activity

-- speed, scale, low cost

-- in vivo drug screens

Thank you...

First generation models

Cagan Laboratory

Alex Teague Jess Esernio

Xenografts:

Greg Carbonetti Elisa de Stanchina, Ph.D.

Antitumor Assessment Core Facility Sloan Kettering Cancer Institute NY

Mouse Models:

Owen Samson, Ph.D. Claudio Murgio, Ph.D.

Beatson Institute, Glasgow, UK

Center for Personalized Cancer Therapeutics

CPCT core team

Ross Cagan, Ph.D. Director

Erdem Bangi, Ph.D. Senior Scientist Caitlyn Yeykal, Ph.D. Scientist

Alex Teague Nelson Gruszczynski Raymond Feng Chana Hecht

<u>Past:</u> Peter Smibert, Ph.D. Jess Eserni

Genomics

Eric Schadt Ph.D. Director

Andrew Uzilov, Ph.D. Yevgeniy Antipin, Ph.D.

Genomics Core Facility Production Bioinformatics Group

<u>Clinical</u>

Marshall Posner, MD. Director

Krzysztof Misiukiewicz, MD Celina Ang, MD Michael Donovan MD. Ph.D.