Disease variant prioritisation and model discovery through crossspecies phenotype analysis

Damian Smedley, Sanger Institute

Standard exome analysis

Exomiser

Benchmarking

- Annotate variants
- Remove off-target, syn and common(>1%) variants (plus optional inheritance model filtering)
- Prioritize based on combined score

Variant and phenotype data synergistically identify causative variant Known associations Novel associations

Comparison to other phenotype-based variant analysis software

Smedley D & Robinson PN. Genome Medicine 2015, 7:81

NIH Undiagnosed Disease Program

=> Use of genotype, phenotype and inheritance data together provide best prioritization

Integration into UDP pipeline

- 4/23 previously problematic cases received a diagnosis
- One novel disease-gene discovery: York Platelet syndrome and *STIM1*
- Strong candidates identified for other cases: functional validation through mouse and zebrafish modelling
- Several hundred further cases now being analysed

Bone W et al. Genetics in Medicine 2015 (In Press)

UDP930/929 diagnosed with a SMS mutation

York platelet syndrome and STIM1

Markello T et al. Molecular Genetics and Metabolism 2015, 114: 474

Grosse J, J Clin Invest 2007 117: 3540-50

Mendelian regulatory mutations

Exomiser software suite

- How-To guide: Nature Protocols 2015 (In Press)
- **PHIVE**: Robinson PN et al. **Genome Research** 2014
- hiPHIVE: Bone W et al. Genetics in Medicine 2015 (In Press)
- PhenIX: Zemojtel T et al. Science Translational Medicine 2014
- ExomeWalker: Smedley D et al. Bioinformatics 2014

Models for functional validation: NIH KOMP2 and IMPC

- 530 genes associated with a Mendelian disease now have a phenotyped IMPC line
- Potential new disease models for 85% as never had a mouse disease model described in literature and 24 already showing phenotype similarity from partial results on the IMPC broad screen
- 75 novel disease gene candidates from phenotypic similarity where human ortholog lies in correct linkage locus

First Bernard-Soulier mouse model

Gene: (ip9			
Name Synonyms MGI Id Status ENSEMBL Links <u>Gene Browser</u> ENI	glycoprotein 9 (platelet) Cd42, GPIX MGI:1860137 ES Cells Mice min phenotype data available C Gene View C Location View C Compara View (1)		+) Logi ⊨ Ord	n to register interest er
Disease M Disease Nar	🔶 Locus 🗸	MGI Mouse Phenotype Evidence (Phenodigm)	IMPC Mouse Phenotype Evidence (Phenodigm)	¢.
Bernard-Soulier Syndrome	OMIM:231200 Yes		74.82	•
Menorrhagia Epistaxis Purpura Abnormality of Thrombocytope Abnormal bleed Prolonged bleed	he abdomen nia	Mouse Models (PhenoDigm predicted m1.1(KOMP)Vicg/ <u>Gpg</u> tm1.1(KOMP)Vicg C57(nean platelet volume platelet cell number		

#231200

BERNARD-SOULIER SYNDROME; BSS

CATEGORY	SUBCATEGORY	FEATURES
Inheritance	-	Autosomal recessive
Head and Neck	Nose	Epistaxis
Abdomen	Gastrointestinal	Hemorrhage
Genitourinary	Internal Genitalia (Female)	Menorrhagia
Skin, Nails, Hair	Skin	Purpura
Hematology	-	Congenital bleeding diathesis
		Large platelets
		Mild thrombocytopenia
Laboratory Abnormalities	-	Prolonged bleeding time
		Reduced platelet glycoprotein Ib complex
		Normal platelet aggregation with ADP, collagen, epinephrine
		Absent platelet agglutination in presence of ristocetin

Spleen lacZ

Thrombocytopenia (MP:0003179)

First bone mineral QTL18 mouse model

Disease: Bone Mineral Density Quantitative Trait Locus 18

Name	Bone Mineral Density Quantitative Trait Locus 18
Synonyms	OSTEOPOROSIS AND OSTEOPOROTIC FRACTURES, SUSCEPTIBILITY TO
Locus	Xq23
Associated Human Genes	PLS3
Mouse Orthologs	<u>Pls3</u>
Source	<u>OMIM:300910</u>
Genes Mouse Orthologs	Pls3

Mouse Models associated by gene orthology

Mouse Gene Symbol	Disease Gene Ortholog	MGI Phenotype Similarity Score	IMPC Phenotype Similarity Score	
P <u>ls3</u>	PLS3		68.88	۰
OMIM:300910 Disease Phenotyp	e Terms	Associated Mouse Models (PhenoDigm pr	redicted)	
Osteopenia Osteoporosis		68.88: / C57BL/6NTac (Source: 3i,IMPC) decreased bone mineral density decreased monocyte cell number		

0

First bone mineral QTL18 mouse model

Disease: Bone Mineral Density Quantitative Trait Locus 18

Bone Mineral Density (excluding skull) Body Composition (DEXA lean/fat)

Decreased bone mineral density (MP:000063)

Novel candidate for isolated microphthalmia, with cataract, 1

Name	Microphthalmia, Isolated, With Cataract 1
Synonyms	CATARACT, CONGENITAL, WITH MICROPHTHALMIA; CATM
Locus	16p13.3
Associated Human	
Genes Mouse Orthologs	
Source	OMIM:156850

Mouse Models associated by gene orthology

No mouse models associated with OMIM:156850 by orthology to a human gene.

Potential Mouse Models predicted by phenotypic similarity

0

Novel candidate for isolated microphthalmia, with cataract, 1

MICROPHTHALMIA, ISOLATED, WITH CATARACT 1; MCOPCT1

Conclusions

- Semantic phenotype comparisons greatly improve diagnosis and candidate gene identification as well as highlighting good disease models
- Inclusion of mouse and fish phenotypes along with guilt by association from PPA data is critical, especially for novel disease gene discovery
- Our results clearly show the value of collecting deep clinical phenotype data for translational bioinformatics

Future challenges

- Inclusion of phenotype frequency data
- Inclusion of negative phenotype data
- Certain phenotypes, e.g. behavioral, are not well covered by mouse/fish and/or our algorithms => incorporate new ontological approaches and species e.g. primates
- Common disease

NIH-UDP

William Bone

Murat Sincan David Adams Amanda Links Joie Davis Neal Boerkoel Cyndi Tifft Bill Gahl

OHSU

Melissa Haendel Nicole Vasilesky Matt Brush Bryan Laraway Shahim Essaid Kent Shefchek

EBI

Terry Meehan Helen Parkinson Jeremy Mason Chao-Kung Chen

Acknowledgments

Lawrence Berkeley Nicole Washington Suzanna Lewis Chris Mungall

MRC Harwell Ann-Marie Mallon Hugh Morgan Ahmad Retha Andrew Blake Armida Di Fenza Duncan Sneddon Gagarine Yaikhom Henrik Westerberg Luis Santos Tanja Fiegel Sanger Bill Skarnes Anika OellIrich Jules Jacobson Irene Papatheodorou

Toronto Marta Girdea Sergiu Dumitriu Heather Trang Orion Buske Mike Brudno

JAX Cynthia Smith

Charité Sebastian Kohler Sandra Doelken Max Schubach Peter Robinson

NIH: U54 HG006370-01 NIH Office of Director: 1R24OD011883 NIH-UDP: HHSN268201300036C, HHSN268201400093P

