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Why are dispersed loci involved in similar

phenotypes?
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Comparing Patient Phenotypes - evidence
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Comparing Patient Phenotypes - language
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“Pathways” and convergent phenotypes

~4,000 patients
with developmental
abnormalities

systematically

phenotyped and
annotated using the
Human Phenotype

Ontology (HPO)

Genes affected by
copy number variants
in these patients
genomes

..[

Functional
enrichment
tests

|




“Pathways” and convergent phenotypes

All patients
with a specific
phenotype

Patients with the specific
phenotype whose variant
genes form part of a
particular “pathway”:

Q: Are these patients
more phenotypically-
similar?



Similarity in patients whose variant genes
contribute to the same “pathway” term
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Same pathway = patients share a
more specific phenotype?
Pathway
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O Same “pathway” = more specific phenotype

O O O Same “pathway” = similar patterns of phenotypes




Patients whose variant genes contribute to the same
“pathway” term — All phenotypes vs narrow phenotypes
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Same pathway = same pattern of
phenotypes

O O O Same “pathway” = similar patterns of phenotype



Take homes

1. Patients whose variants disrupt the same
“pathway” share a broad range of phenotypic
similarities



Functionally-linking genes through
orthogonal data sources

protein interaction
from low-
throughput study

Genetically-

Mouse models interact in yeast

have similar

phenotypes Similar gene

annotations

protein interaction
from high-
throughput study

What does functionally-
similar mean?

Do I trust these
experiments equally?

What is the chance of
seeing this by random?



Functional-linkage networks: Integration of
functional genomics resources to identify
human disease genes

a gene

Protein interaction
gene co-expression
integrated



Predicting human phenotypic associations
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The value of mouse phenotypic data (MGl)
compared to Gene Ontology (GO) annotations

Ability to
predict whether
2 genes are
involved in the
same disorder
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Weighting functional information

The data types are assessed and weighted according to how well they predict

shared mouse phenotypes
Mouse orthologue KO
phenotypes Gene expression .
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Comparison of functional data sources
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Comparison of functional data sources
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Phenotypic-linkage networks

Phenotypic
links
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Disorder-specific networks — tuning

data to specific disorders
Type 2 Diabetes relevant phenotypes

MP:0005379 endocrine/exocrine gland phenotype
MP:0005376 homeostasis/metabolism phenotype

MP:0005375 adipose tissue phenotype
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Clustering T2D exome variants from 12,884

5 ethnic samples: Soutt frican American, European

African

South Asian American
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Take homes

1. Patients whose variants disrupt the same
“pathway” share a broad range of phenotypic
similarities

2. Use the mouse phenotypic data to evaluate
other functional data, especially for
particular phenotypes of interest



Study Bias in haploinsufficiency prediction
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Take homes

1. Patients whose variants disrupt the same
“pathway” share a broad range of phenotypic
similarities

2. Use the mouse phenotypic data to evaluate
other functional data, especially for particular
phenotypes of interest

3. We need less studied genes phenotyped to help
our estimates of variant deleteriousness
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