Clinical Phenotyping from EHRs: Opportunities and Challenges

Rachel Richesson, PhD Duke University School of Nursing

Presented at:

NIH Symposium: Linking Disease Model Phenotypes to Human Conditions Rockville, MD September 10, 2015

Opportunities

- Clinician evaluation of disease & status
 - Diagnoses
 - Problems
 - Clinical notes
- Treatments, procedures, medications
- Labs

- Patient controlled data
 - Patient portals / Patient reported outcomes
 - Biometric uploads

The Office of the National Coordinator for Health Information Technology

Home > About ONC

GO

Get email updates 🖂 Follow us on 📄 Contact us 💶

Search

Health IT Home

Federal Advisory Committees

ONC Initiatives

Outreach, Events, &

About ONC

Coordinator's Corner: Updates from Dr. Blumenthal

Organization

Budget & Performance

Business Grants Management Resources

Contact ONC

Health IT Buzz Blog

Federal Advisory Committee Blog

The Office of the National Coordinator for Health Information Technology (ONC)

The Office of the National Coordinator for Health Information Technology (ONC) is at the forefront of the administration's health IT efforts and is a resource to the entire health system to support the adoption of health information technology and the promotion of nationwide health information exchange to improve health care. ONC is organizationally located within the Office of the Secretary for the U.S. Department of Health and Human Services (HHS).

ONC is the principal Federal entity charged with coordination of nationwide efforts to implement and use the most advanced health information technology and the electronic exchange of health information. The position of National Coordinator was created in 2004, through an Executive Order, and legislatively mandated in the Health Information Technology for Economic and Clinical Health Act (HITECH Act) of 2009.

ONC's mission includes:

- Promoting development of a nationwide Health IT infrastructure that allows for electronic use and exchange of information that:
 - o Ensures secure and protected patient health information
 - Improves health care quality
 - Reduces health care costs
 - Informs medical decisions at the time/place of care
 - o Includes meaningful public input in infrastructure development
 - Improves coordination of care and information among hospitals, labs, physicians, etc.
 - Improves public health activities and facilitates early identification/rapid response to public health emergencies
 - o Facilitates health and clinical research
 - o Promotes early detection, prevention, and management of chronic diseases
 - o Promotes a more effective marketplace
 - o Improves efforts to reduce health disparities
- Providing leadership in the development, recognition, and implementation of standards and the certification of Health IT products;
- Health IT policy coordination;
- Strategic planning for Health IT adoption and health information exchange; and
- · Establishing governance for the Nationwide Health Information Network.

Federal Register Notice

August 13, 2010: Statement of Organization, Functions, and Delegations of Authority; Office of the National Coordinator for Health and Information Technology; Correction [PDF - 49 KB]

December 1, 2009: Organization, Functions, and Delegations of Authority; Office of the National Coordinator for Health Information Technology [PDF - 49 KB]

Celebrating the First Anniversary of the HITECH Act and Looking to the Future: February 2010 [PDF - 852 KB]

Page last updated on: 12/8/2010

Home
 About ONC
 Contact Us
 Accessibility
 Download Adobe Reader
 Privacy Policy
 Web Site Disclaimers

White House
 USA.gov
 GobiernoUSA.gov

Feature

Resources for EHR Incentive Programs

Register now for Medicare and Medicaid EHR Incentive Programs, and learn more about how to become a meaningful user of EHRs.

Quick Links

- BGMB
- ATCBs
- HETECH Programs Certification Programs
- Privacy & Security Meaningful Use
- FACA

			Use information to transform
			Improved population health
	Improve access to information	0	Enhanced access and continuity
		Data utilized to improve delivery and outcomes	Data utilized to improve delivery and outcomes
tilize tech	nology	Patient self management	Patient engaged, community resources
informa	tion Care coordination	Care coordination	Patient centered care coordination
	Patient informed	Evidenced based medicine	Team based care, case management
Basic El functiona structured	HR Structured data ality, utilized	Registries for disease management	Registries to manage patient populations
Privacy & so protection	ecurity Privacy & security ons protections	Privacy & security protections	Privacy & security protections
Stage 1	MU Stage 2 MU	PCMHs 3-Part Aim	ACOs Stage 3 MU

Hospitals Demonstrating Meaningful Use

Source: Office of the National Coordinator for Health Information Technology. 'Hospitals Participating in the CMS EHR Incentive Programs,' Health IT Quick-Stat #45. July 2015. dashboard.healthit.gov/quickstats/pages/FIG-Hospitals-EHR-Incentive-Programs.php

Office-Based Providers Demonstrating Meaningful Use

Percent of Physicians that have Demonstrated Meaningful Use of Certified Health IT | April 2015 54% of Physicians have Demonstrated Meaningful Use of Certified Health IT 0% >0-9% 10-19% 20-29% 30-39% 40-49% 50-59% Source: CMS EHR Incentive Program data. April 2015 and SK&A Office-based Provider Database, 2013

Source: Office of the National Coordinator for Health Information Technology. 'Health Care Professionals Participating in the CMS EHR Incentive Programs,' Health IT Quick-Stat #44. July 2015. dashboard.healthit.gov/quickstats/pages/FIG-Health-Care-Professionals-EHR-Incentive-Programs.php.

Patient Portal Use in Large Health Plan

Figure 1. Age Not a Major Driver of Portal Adoption

Proportion of Patients with Portal Accounts By Age Group, Among Patients with Encounters in the Past 30 Days

Source: athenaResearch.

Sample: 973k patients visiting practices offering the athenaCommunicator portal.

http://thehealthcareblog.com/blog/2015/08/10/the-current-state-of-patient-portal-adoption/

Outstanding Challenges

- EHRs designed to support clinical care
- Completeness & accuracy vary

Outstanding Challenges

- Still not standardized
- 100+ EHR vendor products
- Coding systems used differently
- ICD-10 transition
- Researchers do not control EHR design or documentation/coding practices

Clinical Phenotype Definitions

- Specifications for **identifying patients or populations with a given characteristic or condition of interest from EHRs** using data that are routinely collected in EHRs or ancillary data sources.
- Can support research (cohort selection; study screening) and personalized medicine
- Include widely adopted coding systems
 - ICD-9-CM
 - СРТ
 - SNOMED CT
 - LOINC
 - RxNorm
 - NDC

Example

ICD-9

codes

Diabetes defined as¹:

one inpatient discharge diagnosis (ICD-9-CM 250.x, 357.2, 366.41, 362.01-362.07)

or any combination of <u>two</u> of the following events occurring within 24 months of each other:

- A1C <u>></u> 6.5% (48 mmol/mol) codes
- fasting plasma glucose <a> 126 mg/dl (7.0 mmol/L)
- random plasma glucose <a> 200 mg/dl (11.1 mmol/L)
- 2-h 75-g OGTT ≥ 200 mg/dl
- outpatient diagnosis code (same codes as inpatient)
- anti-hyperglycemic medication dispense (see details below)

codes

- NDC in associated list
 Medication
- ...etc., etc...

1. Nichols GA, Desai J, Elston Lafata J, et al. Construction of a Multisite DataLink Using Electronic Health Records for the Identification, Surveillance, Prevention, and Management of Diabetes Mellitus: The SUPREME-DM Project. Prev Chronic Dis. 2012;9:110311.

The eMERGE Network

The mapping of the human genome has enabled new exploration of how genetic variations contribute to health and disease. To better realize this promise, researchers must now determine ways in which genetic make-up gives some individuals a greater chance of becoming sick with chronic conditions such as diabetes, Alzheimer's, or heart disease. The goal of gaining this knowledge is to translate it to bedside practice and ultimately improve patient care.

The Electronic Medical Records and Genomics (eMERGE) Network is a national consortium organized by NHGRI to develop, disseminate, and apply approaches to research. It combines DNA biorepositories with electronic medical record (EMR) systems for large-scale, high-throughput genetic research with the ultimate goal of returning genomic testing results to patients in a clinical care setting. The Network is currently exploring more than a dozen phenotypes (with 13 additional electronic algorithms having already been published). Various models of returning clinical results have been implemented or planned for pilot at sites across the Network. Themes of bioinformatics, genomic medicine, privacy and community engagement are of particular relevance to eMERGE.

What makes eMERGE unique?

Each center participating in the Network is studying the relationship between genome-wide genetic variation and a common human trait. Such studies commonly involve testing hundreds of thousands of genetic variants called single nucleotide polymorphisms (SNPs) throughout the genome in people with and without the trait. A number of such studies are reassociation between disease and a person's genetic make-up, but those studies are typically costly and take a long time to con

The eMERGE model is exploring use of data from the EMR – clinical systems that represer alternative methodology. Electronic medical records are one of the most exciting potentia member site has EMR data linked to genetic samples obtained in the course of existing co from residual tissue or blood samples. In the eMERGE model, there is no need to actively study population. Cases and controls are quickly and consistently identified from the EMR readily available. This approach is both cost-effective and time-efficient. More detailed inf phenotypes being explored in eMERGE can be found on on PheKB and other freely downly Resources page.

In addition, eMERGE focuses on ethical legal social and policy issues such as privacy an

Phenotypes Home

Implementations Groups

eMERGE Network Institutions

Contact Us

Phenotypes

Group	Include Methods	Exclude Methods	Mine Only		Most Recent Pheno
- Any -	► ICD 10 Codes	Þ	- Any - 🗸 Apply		Severe Early Ch
					B Warfarin dose/re
Title	Groups	Institutions	Data and Methods	Status	B Drug Induced Li
Atrial Fibrillation - Demonstration	Vanderbilt - SD/RD Group	Vanderbilt University	CPT Codes, ICD 9 Codes, Natural Language	Final	Clopidogrel Poo
Project	· · · · · · · · · · · · · · · · · · ·	Processing			Rheumatoid Art
Cardiac Conduction (QRS)	eMERGE Phenotype WG	Vanderbilt University	CPT Codes, ICD 9 Codes, Laboratories, Medications, Natural Language Processing	Final	Project
Cataracts	eMERGE Phenotype WG	Marshfield Clinic Research Foundation	CPT Codes, ICD 9 Codes, Medications, Natural Language Processing	Final	
B Clopidogrel Poor Metabolizers	Denny's Group at Vandy, VESPA - Vanderbilt Electronic Systems for Pharmacogenomic Assessment		CPT Codes, ICD 9 Codes, Laboratories, Medications, Natural Language Processing	Final	
Crohn's Disease - Demonstration Project	Vanderbilt - SD/RD Group	Vanderbilt University	ICD 9 Codes, Medications, Natural Language Processing	Final	
Dementia	eMERGE Phenotype WG	Group Health Cooperative	ICD 9 Codes, Medications	Final	
B Diabetic Retinopathy	eMERGE Phenotype WG	Marshfield Clinic Research Foundation	CPT Codes, ICD 9 Codes, Medications, Natural Language Processing	Final	
B Drug Induced Liver Injury	eMERGE Phenotype WG	Columbia University	ICD 9 Codes, Laboratories, Medications, Natural	Final	

types

	Severe Early Childhood Obesity
Ì	Warfarin dose/response

- iver Injury
- r Metabolizers
- hritis Demonstration

Other Sources for Clinical Phenotypes

- Clinical Classifications Software, "AHRQ Bundles"
- CMS Chronic Conditions Warehouse
- Quality Net (CMS and Joint Commission)
- Mini-Sentinel
- OMOP/OHDSI
- SHARPn
- •

						Research and appli	cations					
		A co for c	mparison liabetes n	of phenotyp nellitus	e defii	nitions						
		Rachel Mark N Susan E	L Richesson, ¹ S I Feinglos, ⁴ Ma E Spratt ⁴	Shelley A Rusincovitch rie Lynn Miranda, ⁵ N	n, ² Dougla / Ed Hami	as Wixted, ³ Bryan C Batcl amond, ^{2,6} Robert M Califf	n, ⁴ 3, 7 '					
• Ado ublis lease http:/ miaji	ditional material is hed online only. To view visit the journal online /dx.doi.org/10.1136/ nl-2013-001952).	ABSTRAC Objectiv characteris heterogen	e This study compar stics of diabetes coho eous phenotype defi	res the yield and orts identified using nitions.	population nitions ca registries f inclusion c	ns. Furthermore, standard phen an streamline the development from healthcare data, and enable criteria to support regional surve	otype defi- of patient e consistent eillance and					
Du f N	Table 1 Dat	ta dom	ain criteria u	sed in selected pl	nenotype	e definitions						
Ap Ouk			Data domain	criteria								_
lor Du hsti lor Div	Phenotype definitions:		ICD-9-CM 250.xx	ICD-9-CM 250.x0 a 250.x2 (excludes t specific codes)	and E type1 C 3	Expanded ICD-9-CM Codes (249.xx, 357.2, 362.0x, 366.41)	HbA1c	Fasting glucose	Random glucose	Abnormal OGTT	Diabetes-associated medications*	
Dep Jinii Durl De Ichii Ind	ICD-9-CM 250.x CMS CCW	x	● ▲*\\			▲*\\						
nic lic Du nfo lor Div Dep	Diabetes-associa medications DDC	ited								▲ \\		
uri Uri	SUPREME-DM eMERGE†		▲*\\	•*\\		▲*\\						

*Medications vary by phenotype definition and are listed for each in the supplementary appendix (available online only).

The eMERGE phenotype definition consists of five case scenarios with varying combinations of criteria. Any instance of type 1 specific codes (ie, 250.x1, 250.x3) results in the exclusion of the patient.

=Sole criteria.

Optional criteria, one of many.

-Distinction made between inpatient and outpatient context.

Distinction made for multiple instances and/or time points.

CMS CCW, Centers for Medicare and Medicaid Services Chronic Condition Data Warehouse; DDC, Durham Diabetes Coalition; eMERGE, electronic medical records and genomics; HbA1c, hemoglobin A1c; ICD-9-CM, International Classification of Disease, revision 9, clinical modification; NYC, New York City; OGTT, oral glucose tolerance test; SUPREME-DM, Surveillance, Prevention, and Management of Diabetes Mellitus.

Clinical Trial Reporting

Patient characteristics:

	No. (%) of Pa	Patients ^a	
Characteristic	Gentamicin-Collagen Sponge (n = 753)	Control (n = 749)	
ient demographics	/		
Age, median (IQR), y	64.2 (58.0-71.5)	64.9 (57.2-72.1)	
White race	688 (91.4)	683 (91.2)	
Weight, median (IQR), kg	98.0 (86.1-113.0)	98.8 (85.0-111.1	
Body mass index, median (IQR)	83.1 (30.2-37.2)	32.8 (30.0-36.2)	
Body mass index >30	574 (76.2)	563 (75.2)	
Male sex	530 (70.4)	530 (70.8)	
dical history History of hypertension	659 (87.5)	659 (88.0)	
History of diabetes	493 (65.5)	513 (68.5)	
Current or history of smoking	458 (60.8)	450 (60.1)	
Current smoking	136 (29.7)	123 (27.3)	
History of chronic obstructive pulmonary disease	117 (15.5)	107 (14.3)	
History of peripheral vascular disease	105 (13.9)	89 (11.9)	
Previous median sternotomy	52 (6.9)	42 (5.6)	
History of TIA or stroke	77 (10.2)	81 (10.8)	
History of myocardial infarction	233 (31.0)	245 (32.7)	
History of congestive heart failure	89 (11.8)	90 (12.0)	
History of hyperlipidemia	619 (82.2)	607 (81.0)	
Steroid use ≤1 mo prior to surgery	28 (3.7)	33 (4.4)	
Receiving dialysis preoperatively	4 (0.5)	2 (0.3)	
operative diagnostic values Left ventricular ejection fraction, median (IQR), %	55 (45-60)	55 (45-60)	
Serum glucose, median (IQR), mg/dL	125 (101-160)	124 (103-167)	
Serum hemoglobin A1c, median (IQR), %	6.5 (5.9-7.6)	6.6 (5.9-7.7)	
Hematocrit, median (IQR), %	39 (36-42)	39 (36-42)	
Serum creatinine, median (IQR), mg/dL	1.0 (0.9-1.3)	1.0 (0.9-1.2)	
operative core temperature, median (IQR), °C	97.6 (97.0-98.2)	97.7 (97.0-98.2)	
operative hospital stay, median (IQR), d	1.0 (0-3.0)	1.0 (0-3.0)	
connet risk coore, median (IOP)	90(60-145)	9.0 (6.0-16.0)	

Multiple phenotype definitions:

SUPREME-DM Phenotype

Definition:

Adult Durham Population patients who meet ONE OR MORE of the following criteria during a <u>DukeMed</u> encounter <u>between 2007-2011</u>:

- One or more instances of the specified ICD-9-CM diagnosis codes (see table 7) on an inpatient encounter
- OR 2 or more instances of the specified ICD-9-CM diagnosis codes (see table 7) on <u>outpatient</u> encounters on separate days
- OR 1 or more instances of active stand-alone medication (see table 8) reported during outpatient medication reconciliation³
- OR 1 or more Oral Glucose Tolerance Test (OGTT) 2-hour 75g result >= 200 mg/dl where there is NO DIAGNOSIS CODE on the same encounter indicating pregnancy (V22, V23)⁴
- OR 2 or more hemoglobin A1c results >= 6.5% on 2 different days within 730 day span
- OR 2 or more fasting glucose results >= 126 mg/dl on 2 different days within 730 day span
- OR 2 or more random glucose results >= 200 mg on 2 different days within 730 day span
- OR within a 730 day span on 2 different days:
 - Fasting glucose results >= 126 mg/dl
 - AND Random glucose results >= 200 mg
- OR within a 730 day span (can be same day):
 - Hemoglobin A1c results >= 6.5%
 AND Eacting glucose results >= 126 mg/d

Abnormal Lab Results

Source:

Laboratory results

Definition:

Adult Durham Population patients who meet **ONE OR MORE** of the following criteria during a <u>DukeMed</u> encounter <u>between 2007-2011</u>:

- One or more instances of hemoglobin A1c results >= 6.5%
- OR one or more fasting glucose results >= 126 mg/dl within 365 day span
- OR one or more random glucose results >= 200 mg/dl within 365 day span

Abnormal HbA1c (NCY A1c Registry Definition)

Source:

Glycated hemoglobin laboratory results

Definition:

Adult Durham Population patients who meet ONE OR MORE of the following criteria during a <u>DukeMed</u> encounter <u>between 2007-2011</u>:

One or more instances of hemoglobin A1c results >= 6.5%

ORIGINAL ARTICLE

Multicenter Study Comparing Case Definitions Used to Identify Patients with Chronic Obstructive Pulmonary Disease

Valentin Prieto-Centurion¹, Andrew J. Rolle¹, David H. Au², Shannon S. Carson³, Ashley G. Henderson³, Todd A. Lee⁴, Peter K. Lindenauer^{5,6}, Mary A. McBurnie⁷, Richard A. Mularski⁷, Edward T. Naureckas⁸, William M. Vollmer⁷, Binoy J. Joese⁹, and Jerry A. Krishnan^{1,9}; on behalf of the CONCERT Consortium

¹Division of Pulmonary, Critical Care, Sleep and Allergy and ⁴Department of Pharmacy Systems, Outcomes and Policy, University of Illinois at Chicago, Chicago, Illinois; ²University of Washington/VA Puget Sound, Seattle, Washington; ³Division of Pulmonary and Critical Care Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; ⁵Department of Medicine and Center for Quality of Care Research, Baystate Medical Center, Springfield, Massachusetts; ⁶Tufts University School of Medicine, Boston, Massachusetts; ⁷The Center for Health Research, Kaiser Permanente, Portland, Oregon; ⁸Section of Pulmonary and Critical Care, University of Chicago Medicine, Chicago, Illinois; and ⁹Population Health Sciences Program, University of Illinois Hospital and Health Sciences System, Chicago, Illinois

Am J Respir Crit Care Med. 2014 Nov 1;190(9):989-95. *doi: 10.1164/rccm.201406-1166OC.*

		Clinical Trial Ref	erence Standard	
Characteristic	Total Sample (<i>n</i> = 998)	Yes* (<i>n</i> = 560)	No [†] (<i>n</i> = 438)	P Value
Comorbid conditions %				
Cardiovascular disease	76	74	78	0.15
Hypertension	66	63	69	0.03
Heart failure	18	16	22	0.01
Coronary artery disease	23	22	24	0.66
Myocardial infarction	19	18	20	0.43
Stroke	15	14	15	0.95
Depression	42	36	50	< 0.0001
Arthritis	36	33	41	0.006
Diabetes	28	22	34	< 0.0001
Cancer history	23	26	19	0.02
Anemia	28	26	30	0.17
Kidney disease	20	18	21	0.30
Dementia	2	2	3	0.15
Dyspnea at rest (Borg), %				
0, no dyspnea	52	54	50	0.02
0.5–2, slight	38	38	37	
≥3, moderate to very severe	10	7	13	
Spirometry, post-bronchodilator, %				
FEV ₁ /FVC <70%	61	100	11	<0.0001
FEV ₁ <80% predicted	72	86	55	<0.0001
6-minute-walk distance, %				
Distance walked <350 m	53	52	54	0.67

Table 2. Clinical Characteristics of Patients Who Met and Did Not Meet the Clinical Trial Reference Standard

Patients who met the trial reference standard are more likely to have airflow obstruction by spirometry but report being less dyspneic. Patients who met the reference standard also have different prevalence of comorbidities. For example, they are more likely to have hypertension, heart failure, and depression. Data for 6-minute-walk distance missing in 9% patients (9% and 10%) and dyspnea scores missing in 8% patients (8% and 9%) in those who met and did not meet the clinical trial reference standard, respectively.

*(A + D + E + G) and [†](B + C + F) in Figure 2.

Characteristics	Odds Ratio (95% CI)
Race (vs. white)	
Black	0.37 (0.26–0.53)*
Other Education (vs. bigb school or less)	0.52 (0.27-1.00)
College/professional degree	0.38 (0.26-0.56)*
Some college	0.68 (1.06–2.03)*
BMI, kg/m ² (vs. normal)	
<18.5 (underweight)	4.00 (1.27–12.50)*
25–29.99 (overweight)	0.87 (0.58–1.30)
≥30 (obese)	0.51 (0.35-0.75)*
Depression (yes vs. no)	$0.53(0.40-0.71)^{\circ}$
Capacity (yes vs. no)	1 47 (1 05-2 09)*
Calleer (yes vs. 10)	1.47 (1.05-2.06)

Table 3. Characteristics Associated with Meeting the Clinical Trial Reference Standard

Definition of abbreviations: BMI = body mass index; CI = confidence interval.

Clinical trial reference standard (A + D + E + G) versus others (B + C + F) in Figure 2. Multivariable logistic regression model that included characteristics listed in Tables 1 and 2 (characteristics significantly associated with meeting the trial reference standard). Results indicate that patients who are black (vs. white), with college or higher (vs. high school or less) education, obese (vs. normal weight), with depression, or diabetes are less likely to meet the trial reference standard. Patients with a history of cancer and underweight patients (vs. normal weight) are more likely to meet the trial reference standard. Hosmer-Lemeshow goodness-of-fit test (P value = 0.17) demonstrates adequate model fit.

*P < 0.05.

■ NIH Collaboratory_{Rethinking Clinical Trials}™

https://www.nihcollaboratory.org

Health Care Systems Research Collaboratory

NIH Collaboratory

About Us
 UH2 Demonstration Projects

News Living Textbook

Cores •

tbook Collaboration Spaces

NIH Collaboratory + Home

Upcoming Events

Grand Rounds March 7: Bray Patrick-Lake (CTTI; PCORnet Executive Committee member), Sue Sheridan (PCORI), and Sean Tunis (CMTP) Patient Engagement in Infrastructure Development

Secretary's Advisory Committee for Human Research Protections (SACHRP): March 12-13

Grand Rounds March 14: TBD TBD

Subscribe to our mailing list: nih-collaboratory@dm.duke.edu.

Knowledge Repository

View Collaboratory products, resources, publication references, etc.

Rethinking Clinical Trials"

Featured Topics

Articles, presentations, and other products related to specific topics of interest.

- Regulatory Update related to SUPPORT Trial
 Demonstration Projects Regulatory and
- Ethics Discussions
- NIH Collaboratory Communication Channels Chart

ES NEW

Educational Presentations: Archives

02-21-14: Sharon Terry Participant Engagement: Tools to Meet People Where They Are

02-14-14: Eric Larson

Engaging Health Systems in Research Partnerships

Collaboratory News

Stop CRC featured on NPR Health Blog

02/26/2014: Gloria Coranado, PhD, was recently featured on the NPR Health Blog discussing the Stop CRC study.

PubMed Related Articles

	URL	Publication Date	Description
Joe Selby writes perspective piece for the New England Journal of Medicine on PCORI 02/13/14: Joe Selby, MD, MPH, Executive Director of PCORI, published a perspective piece in the latest issue of the New England Journal of Medicine on lessons learned in	Rescuing clinical trials in the United States and beyond: A call for action.	2013/06	To promote consensus around the solutions needed to address the adverse trends in clinical research, the Duke Clinical Research Institute convenedstakeholders from academia, industry, and government. This article summarizes the proceedings.
PCORI's 3-year history.	Rapid, responsive, relevant (R3) research: a call for a rapid learning health research enterprise	2013/05	To produce more rapid, responsive, and relevant research, we propose approaches that increase relevance via greater stakeholder involvement, speed research via innovative designs, streamline review processes.
First papers enroled in Collaboratory that 01/13/14: The TiME Demonstration Project, led the University of Pennsylvania's Laura Dember, MD, has enrolled its first patient.	Human subjects protections in community-engaged research: a research ethics framework	2010/03	This new framework for exploring the risks in community-engaged research can help academic researchers and community partners ensure the mutual respect that community- engaged research requires.

Other Research Updates in the News ... >

About PCORnet Member Networks Task Forces Events PCORnet News References & Resources Home

PCORnet: The National Patient-Centered Clinical Research Network

The Patient-Centered Outcomes Research Institute (PCORI) is supporting the development of PCORnet, the National Patient-Centered Clinical Research Network, to create a large, highly representative, national network for conducting clinical outcomes research.

PCORnet will transform clinical research by engaging patients, care providers, and health systems in collaborative partnerships to improve healthcare and advance medical knowledge. By bringing research and patient care together, this innovative health data network will be able to explore the questions that matter most to patients and their families. Read more

Patient-focused drug development moves into the mainstream

Posted March 16, 2015, Applied Clinical Trials

Ruilding on the experience gained from FDA meetings soliciting nationt perspectives, sponsors

Contact Us Office Hours Member Log-in [Central Desktop]

Resources

FAQs FDA Mini-Sentinel Assessments Patient Data Privacy PCORnet Master Slides References Templates Why PCORnet Exists

Events

Coverage and Precision of Rare Disease Names (n=5,333)

Unpublished Data. Kin Wah Fung, Olivier Bodenreider, Rachel Richesson 2014.

"Grouper" codes that contain multiple rare disease concepts (less precise)

# rare diseases included	# ICD-9-CM codes	# ICD-10-CM codes	# SNOMED CT codes
in code			
1	1081 (62%)	1403 (73%)	3311 (85%)
2	319	328	478
3	125	88	84
4	68	45	33
5	43	25	3
> 5	117	40	0
# codes including > 1	672 (38%)	526 (27%)	598 (15%)
disease (%)			
Examples	208 rare diseases	22 rare diseases	5 rare diseases included
	included under 759.89	included under Q82.8	under 28835009
	Other specified	Other specified	Retinitis pigmentosa
	congenital anomalies	congenital	
		malformations of skin	

Unpublished Data. Kin Wah Fung, Olivier Bodenreider, Rachel Richesson 2014.

SNOMED CT

- Most comprehensive, multilingual clinical terminology in the world
- Used in > 50 countries
- Meaningful Use requires use of SNOMED CT in the EHR for problem lists, procedures.
- SNOMED CT is better suited for clinical data capture because:
 - Better content coverage
 - Clinically oriented
 - Flexible data entry and retrieval

Use Cases and Coding Systems for Rare Diseases

Multiple Terminologies

1. Outpatient COPD encounter	ICD-9 (or corresponding SNOMED) codings 491.xx - chronic bronchitis 492.xx - emphysema 493.2x - chronic obstructive asthma 496.xx - chronic airway obstruction
2. Inpatient COPD encounter	ICD-9 (or corresponding SNOMED) codings 490.xx - bronchitis, not specified as acute or chronic 491.xx - chronic bronchitis 492.xx - emphysema 493.2x - chronic obstructive asthma 494.xx - bronchiectasis 495.xx - extrinsic allergic alveolitis 496.xx - chronic airway obstruction
3. Hospitalized respiratory failure (primary) with secondary COPD coding	518.81 acute respiratory failure 518.82 other pulmonary insufficiency not elsewhere classified 518.84 acute and chronic respiratory failure
4. Problem List	Coded fields ICD-9 /variant "V" coding or SNOMED) – COPD, emphysema, chronic bronchitis, chronic airway obstruction
5. PFT demonstrating likely obstructive lung disease	Evidence of pre or post-bronchodilator obstruction defined by an FEV1 / FVC ratio < 0.7
6. Documented COPD- related drug dispensing, order or medication listing	Beta-agonists by nebulized delivery Beta-agonists, Inhalers - Long acting Ipatropium & Tiotropium Inhaled Corticosteroid (ICS) Combivent (Ipratropium+Albuterol) Combination Inhaled Beta-agonists + ICS (ie Advair) RxNorm \rightarrow NDC

Figure 1. The various subdomains integrated in the UMLS.

Olivier Bodenreider Nucl. Acids Res. 2004;32:D267-D270

Nucleic Acids Research

Possible actions...

- Link specialized terminologies with UMLS
- Recognize importance of clinical interface terminology (SNOMED CT or HPO)
 - Advocate for standards (requirements or incentives)
 - Promote use of SNOMED CT in healthcare systems
- Expand coverage of diseases in SNOMED CT
- Laboratory data critical
- Coordinate and communicate across disciplines!

Acknowledgments

- This work was made possible by the National Institutes of Health (NIH) <u>Common Fund</u>, through a cooperative agreement (U54 AT007748) from the Office of Strategic Coordination within the Office of the NIH Director, and the <u>Patient Centered Outcomes Research Institute</u>.
- The views presented here are solely the responsibility of the author and do not necessarily represent the official views of the National Institutes of Health or PCORI.
- Kin Wah Fung and Olivier Bodenreider (National Library of Medicine) supported exploration of rare disease names in UMLS.