Deep Phenotyping for Translational Research and Precision Medicine

NIH Symposium: Linking Disease Model Phenotypes to Human Conditions

Peter Robinson

Charité Universitätsmedizin Berlin

September 10-11, 2015

Thanks!

http://monarchinitiative.org

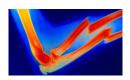
Plan

- Human Phenotype Ontology (HPO)
- 2 Ontology Algorithms: The Bare-Bones Basics
- 3 The Phenomizer
- 4 The HPO for translational research
- 5 PhenIX: Clinical Diagnostics in Medical Genetics
- 6 HPO: Semantic Unification of Common and Rare Disease
- 7 Pressing Needs and Goals for Future Impact

Bioinformatics

• Since the beginnings of the field of Bioinformatics in the 1960s, a central theme has been the development of algorithms that calculate similarity scores between biological entities and use them to rank lists

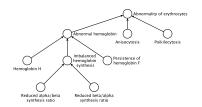
BLAST: Find and rank homologous sequences



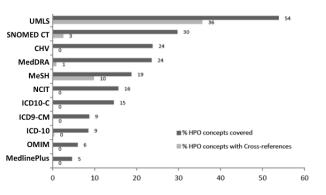
Margaret Dayhoff, originator of PAM matrices

Bioinformatics for medicine?

But how exactly do we calculate the similarity between diseases, symptoms, patients,...?



The Human Phenotype Ontology



- 11,030 terms
- 117,348 annotations for ~ 7000 mainly monogenic diseases
- http://www.human-phenotype-ontology.org
- Widely used in rare disease community: UK 100,000 genomes; NIH Undiagnosed Diseases Network; DDD/DECIPHER, GA4GH, etc.
- Applications:
 - linking human diseases to animal models
 - inferring novel drug interactions
 - prioritizing gene-disease targets
 - describing rare clinical disorders
- ullet Interoperable with $model\ organism\ data$ and $basic\ research\ standards$
- A *computable* representation of human disease

Why HPO?

• Substantially better coverage of phenotype concepts than any other terminology

Winnenburg and Bodenreider,

ISMB PhenoDay, 2014

Widely used in the community

Databases & Bioinformatics Resources Using HPO

DECIPHER (Sanger Institute)

DDD (Sanger Institute)

ECARUCA

FORGE (Genome Canada)

GWAS Central

IRDiRC

ISCA

NCBI Genetic Testing Registry

NIH Undiagnosed diseases program

UK 100,000 Genomes Program

UMLS

Phenotips (Brudno Group, U Toronto)

Major credits go to OMIM and Orphanet

orphanet

8/50

The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data

D966-D974 Nucleic Acids Research, 2014, Vol. 42, Database issue

Published online 11 November 2013

Sebastian Köhler^{1,2,*}, Sandra C. Doelken¹, Christopher J. Mungall³, Sebastian Bauer¹, Helen V. Firth^{4,5}, Isabelle Bailleul-Forestier⁶, Graeme C. M. Black^{7,8}, Danielle L. Brown⁶, Michael Brudno 10,11, Jennifer Campbell 9,12, David R. FitzPatrick 13, Janan T. Eppig 14, Andrew P. Jackson¹³, Kathleen Freson¹⁵, Marta Girdea^{10,11}, Ingo Helbig¹⁶, Jane A. Hurst¹⁷, Johanna Jähn¹⁶, Laird G. Jackson¹⁸, Anne M. Kelly¹ David H. Ledbetter²⁰, Sahar Mansour²¹, Christa L. Martin²⁰, Celia Moss²² Andrew Mumford²³, Willem H. Ouwehand^{4,19}, Soo-Mi Park⁵, Erin Rooney Riggs²⁰ Richard H. Scott²⁴, Sanjay Sisodiya²⁵, Steven Van Vooren²⁶, Ronald J. Wapner²⁷, Andrew O. M. Wilkie²⁸, Caroline F. Wright⁴, Anneke T. Vulto-van Silfhout²⁹, Nicole de Leeuw²⁰, Bert B. A. de Vries²⁰, Nicole L. Washingthon³, Cynthia L. Smith¹⁴. Monte Westerfield , Paul Schofield , Barbara J. Ruef , Georgios V. Gkoutos , Melissa Haendel³³, Damian Smedley⁴, Suzanna E. Lewis³ and Peter N. Robinson^{1,2,34,4}

¹Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1 13353 Berlin, Germany, "Berlin-Brandenburg Center for Recenerative Therapies, Charté-Universitätsmedicin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany, ⁹Lawrence Berkeley National Laboratory, Mail Stop 84R0171, Berkeley, CA 94720, USA, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10, 1SA, UK, "Department of Medical Genetics, Cambridge University Addenbrooke's Hospital, Cambridge CB2 2QQ, UK, *Université Paul Sabatier, Faculté de Chisurole Dentaire CHU Toulouse, France, Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC), Manchester, UK, "Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, MAHSC, Manchester M13 9WL, UK, Pinstitute of Genetic Medicine, Newcastle University, Central Parkway, Newcastle upon Tyne, NEI 3BZ, UK, 16Department of Computer Science, University of Toronto. Ontario, Canada, 11 Centre for Computational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada Department of Clinical Genetics, Leeds Teaching Hospitals NHS Trust, Leeds LS2 9NS, UK. **MRC Human Genetics Unit, MRC Institute of Genetic and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU. UK, 14The Jackson Laboratory, Bar Harbor, ME 04609, USA, 15Center for Molecular and Vascular Biology University of Leuven, Belgium, 16 Department of Neuropediatrics, University Medical Center Schleswig-Holstein Kiel Campus, 24105 Kiel, Germany, 17NE Thames Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK, ¹⁸Drexel University College of Medicine, Philadelphia, PA 19102, USA, ¹⁹Department of Haematology, University of Cambridge and NHS Blood and Transplant Cambridge, CB2 0PT Cambridge, UK, ²⁰Autism and Developmental Medicine Institute, Geisinger Health System, Danville, PA 17822, USA, ²¹SW Thames Regional Genetics Service, St George's Healthcare NHS Trust, Tooting, London SW17 ORE, UK, Department of Dermatology, Birmingham Children's Hospital, Birmingham, UK, Bristol Heart Institute University of Bristol, Bristol, UK, ³Department of Clinical Genetics, Great Ormond Street Hospital, London and Clinical and Molecular Genetics Unit, UCL Institute of Child Health, London, UK, 25 Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK, ²⁶Cartagenia, Leuven, Belgium, ²⁷Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10032, USA, ¹⁹Weatherall Institute of Molecular Medicine, University of Oxford, John Radolffe Hospital, Oxford OX3 9DS, UK, ²⁸Department of Human Genetics, Radboud University Medical Centre, 6500 HB Nimegen, The Netherlands ²⁰ZFIN, University of Oregon, Eugene, OR 97403-5291, USA, ³¹Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3EG, UK, 15 Department of Computer Science, Aberystwyth

Plan

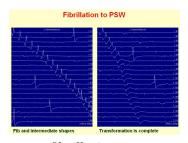
- 1 Human Phenotype Ontology (HPO)
 - Ontology Algorithms: The Bare-Bones Basics
- 3 The Phenomizer
- 4 The HPO for translational research
- 5 PhenIX: Clinical Diagnostics in Medical Genetics
- 6 HPO: Semantic Unification of Common and Rare Disease
- 7 Pressing Needs and Goals for Future Impact

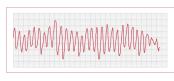
What's The Problem?

- Phenotypic descriptions that are very evocative for humans but meaningless for computers:
 - myopathic electromyography still walking 25 years after onset
- The following descriptions mean the same thing to you: "generalized amyotrophy", "generalized muscle atrophy", "muscular atrophy, generalized" $({\rm etc})^1$
- Many publications have little² information about the actual phenotypic features seen in patients with particular mutations
- Databases cannot talk to one another about phenotypes

A tale of two footballs

A football ...


A football ...

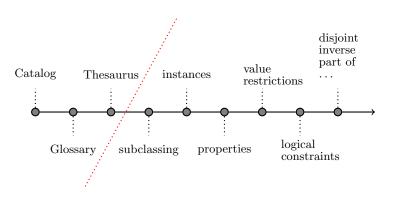

American Football = Football = European Football = Soccer

When you see "football", your computer sees:

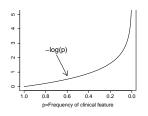
→御 → → 重 → → 重 →

A tale of two fibrillations

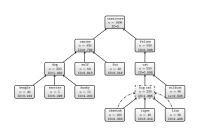
fibrillation ...


fibrillation ...

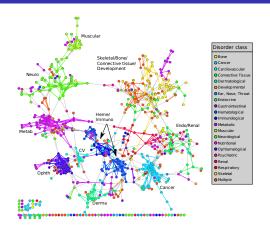
 $muscle\ fibrillation = fibrillation = fibrillation = ventricular\ fibrillation$


When you see "fibrillation", your computer sees:

What is an Ontology?


"An ontology is a specification of a conceptualization." Tom Gruber, 1993

Information content



$$IC(t) = -\log p(t),$$

- Information content of common ancestor: Similarity between ontology terms
- Average similarity between terms can be used to compare two diseases

The Human Phenome: Network of Human Diseases and Disease Genes

$$\operatorname{sim}(d_1, d_2) = 0.5 \cdot \operatorname{avg}\left[\sum_{s \in d_1} \max_{t \in d_2} \operatorname{sim}(s, t)\right] + 0.5 \cdot \operatorname{avg}\left[\sum_{s \in d_2} \max_{t \in d_1} \operatorname{sim}(s, t)\right]$$

FOL: Klingon Opera

$$(\forall x)(\texttt{Klingon}(x) \Rightarrow \texttt{OperaLover}(x)) \\ \texttt{Klingon}(Worf)$$

• If Klingon(Worf) is true, we can infer that Worf is an opera lover.

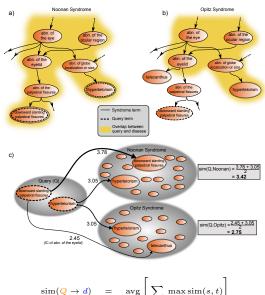
 ${\tt OperaLover}(Worf)$

 Analogous algorithms are the basis for human ⇔ model organism comparisons

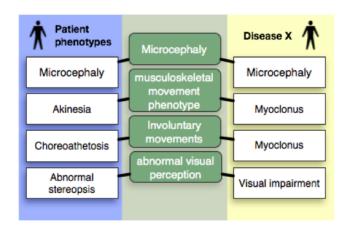
What is a phenotype ontology?

Precise language (and thinking), interoperability, improved database models to reliably capture and interpret phenotype information.

- A *medical* phenotype ontology describes the individual manifestations of diseases:
 - signs
 - 2 symptoms
 - laboratory findings
 - imaging studies
 - o etc.
- Deep phenotype: The precise and comprehensive analysis of phenotypic abnormalities
- Individual components of disease rather than "gestalt"

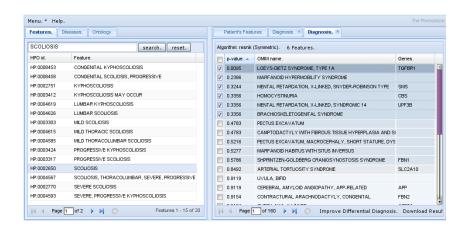

Robinson PN, Webber C (2014) Phenotype ontologies and cross-species analysis for translational research. $PLoS\ Genet\ {f 10} := 1004268.$

PN Robinson (2012) Deep phenotyping for precision medicine. Hum Mutat 33: 777–780 (Special Issue of Human Mutation on Deep Phenotyping)


Plan

- 1 Human Phenotype Ontology (HPO)
- 2 Ontology Algorithms: The Bare-Bones Basics
 - 3 The Phenomizer
- 4 The HPO for translational research
- 5 PhenIX: Clinical Diagnostics in Medical Genetics
- 6 HPO: Semantic Unification of Common and Rare Disease
- Pressing Needs and Goals for Future Impact

Ontological diagnostics



 $\sin(Q \to d) = \arg \left[\sum_{s \in Q} \max_{t \in d} \min_{s, t} (s, t) \right]$

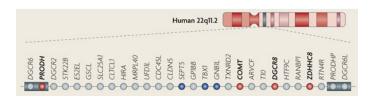
• Basic idea of ontological search: Do not need exact match! But semantically similar diseases score well

The Phenomizer

Sebastian Köhler et al. (2009) Clinical Diagnostics with Semantic Similarity Searches in Ontologies. Am J Hum Genet, 85:457-64.

http://compbio.charite.de/Phenomizer

Plan


- 1 Human Phenotype Ontology (HPO)
- 2 Ontology Algorithms: The Bare-Bones Basics
- 3 The Phenomizer
 - 4 The HPO for translational research
- 5 PhenIX: Clinical Diagnostics in Medical Genetics
- 6 HPO: Semantic Unification of Common and Rare Disease
- Pressing Needs and Goals for Future Impact

HPO for translational research

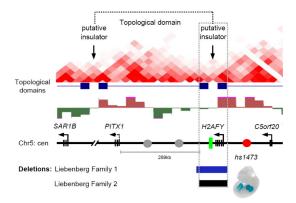
• The HPO is a sophisticated computational resource that can be used to link data from anatomy, histology, pathology, gene function, model organisms, etc., in order to perform integrative computationally driven translational research

Traditional view of CNV pathogenesis

- Phenotype results from dosage effects of one or more affected genes
- Diagnostic problem: Distinguish pathogenic from neutral CNVs
- Scientific and medical problem: Decide which genes are responsible for the phenotypic features?

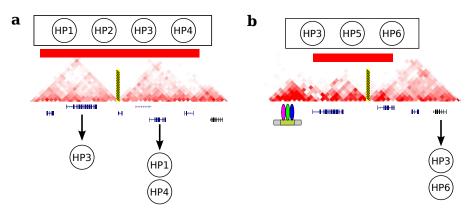
For instance, haploin sufficiency of TBX1 contributes to the heart defects seen in 22q11.2 deletion syndrome

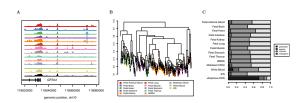
Liebenberg syndrome


• Recent observations challenge the gene-dosage model

Spielmann et al., (2012) Homeotic Arm-to-Leg Transformation Associated with Genomic Rearrangements

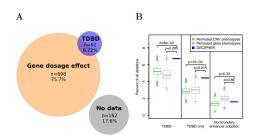
Long Range Control of Gene Expression


- Re-examination of the Liebenberg deletion indicated deletion of a topological domain barrier between a forelimb enhancer and a PITX1
- ... leading to ectopic gene expression ("enhancer adoption")


Spielmann M, Mundlos S (2013) Bioessays 35:533-43.

Gene-Dosage vs. Enhancer adoption

• Therefore, we decided to address the question of how common haploinsufficiency (gene-dosage; a) and TDB disruption (b) are amongst CNVs associated with congenital disease


Tissue-Specific Enhancers and Phenotypic categories

- Our genome: > 400,000 enhancers
- We identified cell type specific enhancers as DNase I hypersensitive sites (DHS)
- Assigned tissue-specific enhancers to HPO terms

Tissue	HPO term name	Term ID	Descendant HPO	Genes	Cases
			terms		
Adrenal	Abnormality of the adrenal glands	HP:0000834	65	75	2 (0.217%)
Brain	Abnormality of the forebrain	HP:0100547	213	640	276 (29.9%)
Heart	Abnormality of the heart	HP:0001627	273	491	236 (25.6%)
Intestine	Abnormality of the intestine	HP:0002242	121	260	17 (1.84%)
Kidney	Abnormality of the kidney	HP:0000077	184	383	77 (8.35%)
Lung	Abnormality of the lung	HP:0002088	149	529	9 (0.976%)
Muscle	Abnormality of the musculature	HP:0003011	667	1079	291 (31.6%)
Stomach	Abnormality of the stomach	HP:0002577	24	116	10 (1.08%)
Thymus	Abnormality of the thymus	HP:0000777	9	26	0 (0.0%)
WBC	Abnormality of leukocytes	HP:0001881	195	256	4 (0.434%)

How common is enhancer adoption?

- 6.7% of 922 DECIPHER deletion cases potentially related to TDBD
- \bullet Even higher rate of TDBD predicted by analysis that includes ontologically mapped model organism phenotype data (mouse, fish): 11.9%
- No difference if we simulate deletions so as not to disrupt TDBs!
 Ibn-Salem J, Köhler S, (13 coauthors), Spielmann M, Robinson PN (2014) Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biology 15:423.

Plan

- 1 Human Phenotype Ontology (HPO)
- 2 Ontology Algorithms: The Bare-Bones Basics
- 3 The Phenomizer
- 4 The HPO for translational research
 - PhenIX: Clinical Diagnostics in Medical Genetics
- 6 HPO: Semantic Unification of Common and Rare Disease
- 7 Pressing Needs and Goals for Future Impact

Clinical Diagnostics in Medical Genetics

Getting a precise diagnosis for individuals with rare disease can be difficult

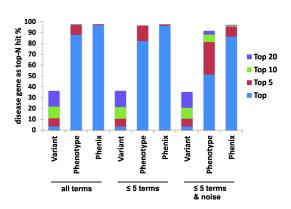
- Roughly 7,000 Mendelian diseases. Although these diseases are individually rare, up to 8% of the population is affected by a specific genetic disorder
- Diagnosis useful for avoiding unnecessary investigations, exact prognosis, personalised clinical management, recurrence risk, "closure" and reduction of feelings of guilt
- Diagnostic rate

```
Cytogenetics: \sim 4\%
```

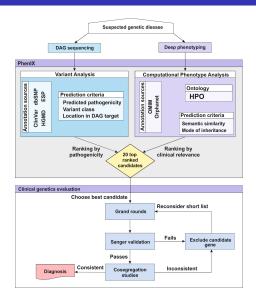
Array-CGH: \sim 10–15 %

Targeted Sanger sequencing: ~ 5–95% (depending on indication)

31/50


Total with traditional workup: Less than 50% overall³

PhenIX


- Basic algorithm: (i) Identify predicted pathogenic mutations in (clinical) exome (typically up to 100); (ii) rank the corresponding genes according to phenotypic relevance with the Phenomizer
- PhenIX Phenotypic Interpretation of eXomes
- Designed for **clinical diagnostics** with exome or DAG panel

Phenotypic Interpretation of eXomes: PhenIX

• In 10,000 simulations with mutations from HGMD and corresponding HPO terms, the correct gene was ranked in first place in over 86% of cases

PhenIX: Workflow

Clinical/Bioinformatic workflow in ca. 60 min •

PhenIX: Prospective Validation

ID	Age, Sex	Presentation	Gene	Rank	Diagnosis	
P1	3y (f)	Intellectual disability + complex phenotype	MLL	2	Wiedemann Steiner syndrome	
P2	5y (f)	Intellectual disability + complex phenotype	SYNGAP1	4	Mental retardation, MRD5 (41)	
P3	6y (f)	Skeletal phenotype	FGFR2	1	Pfeiffer syndrome	
P4	d. 5.5m (f)	Complex phenotype without intellectual disability	SH3PXD2B	6	Frank-ter Haar syndrome	
P5	6m (f)	Intellectual disability + neurological abnor- malities	SLC6A3	1	Parkinsonism-dystonia	
P6	Fetus	Skeletal phenotype	ALPL	2	Infantile hypophosphatasia	
P7	7y (m)	Eve phenotype	NHS	2	Nance-Horan Syndrome	
P8	14y (m)	Intellectual disability + complex phenotype	MLL	1	Wiedemann-Steiner syndrome	
P9	6y (f)	Intellectual disability + complex phenotype	DYRK1A	4	Mental retardation, MRD7	
P10	1.5 - 7y	Intellectual disability + complex phenotype	MCOLN1	1	Type IV mucolipidosis	
P11	3y (m)	Intellectual disability + complex phenotype	RBM10	3	TARP syndrome	

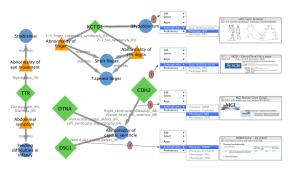
 \bullet Diagnosis rate was 100% in 52 retrospective "solved" cases and 28% in the 40 "unknown" cases

PhenIX

RESEARCH ARTICLE

GENETIC DIAGNOSIS

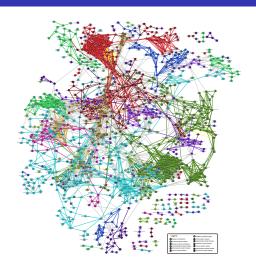
Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome


Tomasz Zemojtel, 1,2,3 Sebastian Köhler, 1 Luisa Mackenroth, 1 Marten Jäger, 1 Jochen Hecht, 4,5 Peter Krawitz, 1,4 Luitgard Graul-Neumann, 1 Sandra Doelken, 1 Nadia Ehmke, 1 Malte Spielmann, 1,4 Nancy Christine Øien, 1,6 Michal R. Schweiger, 1,4,7 Ulrike Krüger, 1 Götz Frommer, Björn Fischer, 1.4 Uwe Kornak, 1.4 Ricarda Flöttmann, 1 Amin Ardeshirdavani, 9 Yves Moreau, Suzanna E. Lewis, Melissa Haendel, Damian Smedley, Denise Horn, Stefan Mundlos, 1,4,5 Peter N. Robinson 1,4,5,13†

- http://compbio.charite.de/phenix
- Zemoitel T et al (2014) Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome. Science Translational Medicine 6:252ra123

The value of models

- We remain largely ignorant of the genetic basis of human disease
- Large scale mouse and zebrafish programs are providing phenotype data for many thousands of genes for which no human disease is currently known
- A number of talks in this Symposium!



Köhler S, Schoeneberg U, et al (2014) Clinical interpretation of CNVs with cross-species phenotype data.

Plan

- 1 Human Phenotype Ontology (HPO)
- 2 Ontology Algorithms: The Bare-Bones Basics
- The Phenomizer
- 4 The HPO for translational research
- 5 PhenIX: Clinical Diagnostics in Medical Genetics
 - 6 HPO: Semantic Unification of Common and Rare Disease
- 7 Pressing Needs and Goals for Future Impact

HPO and Common Disease

- Groza T, et al. (2015) The Human Phenotype Ontology: Semantic unification of common and rare disease (Am J Hum Genet, 97:111-24)
- 132,006 annotations to terms of the HPO for 3,145 common human diseases

Phenotypic overlap: Rare and Common

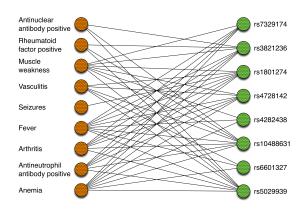
• Mutations in the coding sequence of PSEN1 are associated with early-onset familial Alzheimer's disease

- Mutations in the promoter of PSEN1 are associated with an increased risk of late-onset Alzheimer's disease
- Question: How common is this across the spectrum of all Mendelian disease?

Phenotypic overlap: Rare and Common

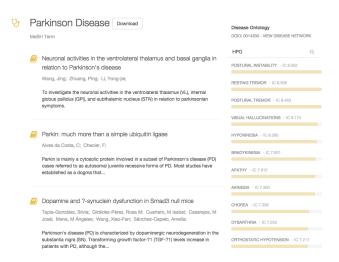
We compared phenotypes of rare diseases and common diseases with non-coding GWAS hits in the region of the gene

Disease	Common HPO terms
rs840016: Rheumatoid arthritis43	Edema (HP:0000969)
CD247: Immunodeficiency due to defect in CD3-ζ	Arthralgia (HP:0002829)
	Arthritis (HP:0001369)
	Autoimmunity (HP:0002960)
rs2268361: Polycystic ovary syndrome ⁴⁴	Polycystic ovaries (HP:0000147)
FSHR: Ovarian hyperstimulation syndrome & Ovarian	Decreased fertility (HP:0000144)
dysgenesis 1	Amenorrhea (HP:0000141)
rs13081389: Type 2 diabetes mellitus ⁴⁵	Hyperglycemia (HP:0003074)
PPARG: Lipodystrophy, familial partial, type 3	Hyperinsulinemia (HP:0000842)
	Hypertension (HP:0000822)
rs9644568: Hypertriglyceridemia ⁴⁶	Hypercholesterolemia (HP:0003124)
LPL: Type I hyperlipoproteinemia	Combined hyperlipidemia (HP:0008356)
	Atherosclerosis (HP:0002621)
	Pancreatitis (HP:0001733)
rs34778348: Parkinson's disease ⁴⁷	Rigidity (HP:0002063)
LRRK2: Parkinson disease-8	Bradykinesia (HP:0002067)
	Dementia (HP:0000726)
	Tremor (HP:0001337)
rs12726330: Parkinson's disease ⁴⁸	Akinesia (HP:0002304)
GBA: Gaucher disease, various types	Dementia (HP:0000726)
	Dementia (HP:0000726)
	Rigidity (HP:0002063)
rs12149070: COPD ⁴⁹	Respiratory tract infection (HP:0011947)
HYDIN: Ciliary dyskinesia, primary, 5	Respiratory insufficiency (HP:0002093)


- Hundreds of candidates
- Overlap was significantly higher than randomized networks ($p = 1.6 \times 10^{-7}$)

Phenotypic Networks of Common Disease

GWAS studies have identified over 6,000 strong associations $(p < 10^{-8})$ to common complex diseases


- Some GWAS hits have been associated with multiple diseases
- For instance, rs1344706 is associated with both schizophrenia and bipolar disease
- Of 16,152 GWAS hits analysed (GWAS Central), 863 were associated with 2 or more diseases
- For these 863 GWAS hits, we compared the HPO annotations of the diseases and looked for overlap

Phenotypic Networks of Common Disease

- We identified a substantial amount of phenotypic overlap including many dense subnetworks
- Highly statistically significant $(p = 2.3 \times 10^{-57})$

Common Disease Annotations: Browsing

 The common disease annotations are available for browsing and download at http://pubmed-browser.human-phenotype-ontology.org

Plan

- 1 Human Phenotype Ontology (HPO)
- 2 Ontology Algorithms: The Bare-Bones Basics
- 3 The Phenomizer
- 4 The HPO for translational research
- 5 PhenIX: Clinical Diagnostics in Medical Genetics
- 6 HPO: Semantic Unification of Common and Rare Disease
 - 7 Pressing Needs and Goals for Future Impact

Cross species phenotype analysis

- The full value of projects such as UDP/UDN, 100K Genomes, IMPC, and many others will not be gotten without comprehensive computational phenotype resources
- Monarch and HPO are growing into a comprehensive interlinked database of the human phenome and diseasome with relevant model organism data, but are still underfunded
- Some areas in HP and MP will require extension
 - Behaviour
 - Metabolism (e.g., metabolomics)
 - Craniofacial

Precision Medicine

 While current algorithms are working well for rare disease, more sophisticated representations of the phenotype will be required for common (complex) disease including cancer

Time course
Multimorbidity
Medications and treatments

Side effects

• Integrated algorithms for matching phenotype to molecular pathophysiology

Enable & shorten time to diagnosis Identify actionable subtypes Understand natural history and gender differences

- Connect to molecular taxonomy of disease
- Animal models of common disease

Genome sequencing & Non-coding Variation

- We are just beginning to explore the role of the entire genome in human disease
- Regulatory variation is probably more common than we think
- By understanding regulatory mutations in rare disease, we will have a path towards precision medicine – the great majority of GWAS hits are non-coding.
- How does phenotype differ from that of coding mutations in rare disease (e.g., SHH or PTF1A)
- How do the myriad variants found in all of us contribute to the phenotypic spectrum of common disease?
- Animal models of gene regulation are many but not currently annotated in a way that could be integrated in medical analysis

Thank you for your attention

Computational Biology and Bioinformatics Group, Charité

Sebastian Bauer (alumnus)

Peter Hansen

Verena Heinrich

Jonas Ibn-Salem

Marten Jäger

Sebastian Köhler

Peter Krawitz

Peter N Robinson

Oliver Stolpe

Na Tzu

Tomasz Zemoitel

http://compbio.charite.de

Institute of Medical Genetics, Charité

Johannes Grünhagen (alumnus)

Gao Guo (alumnus)

Claus-Eric Ott.

Sandra Dölken (alumna)

Denise Horn

Ulrike Krüger

Stefan Mundlos

ZFIN: The Zebrafish Model Organism Database, Eugene, OR, USA

Monte Westerfield

Barbara Ruef

Max Planck Institute for Molecular Genetics. Berlin

Marcel H. Schulz

University of Cambridge UK

George V. Gkoutous

Michael Ashburner

Paul Schofield

MRC Harwell UK

John Hancock

Berkeley Bioinformatics and Ontology

Project (BBOP) California Suzi Lewis

Chris Mungall

Nicole Washington

Mouse Informatics Group, Sanger Institute

Damian Smedlev Jules Jacobsen

Oregon Health & Sciences University

Melissa Haendel

Nicole Vasilevsky

HPO: Find out more

Overview articles	
Robinson PN et al 2008 Robinson PN, Mundlos S 2010	The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet 83:610-5. The human phenotype ontology. Clin Genet 77:525-34.
Köhler et al 2014	The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. <i>Nucleic Acids Res.</i> 42 :D966-74.
Computati	onal semantic reasoning over phenotypes
Köhler et al (2013)	Construction and accessibility of a cross-species phenotype ontology along with gene annotations for biomedical research. F1000Research 2:30
Köhler S et al. (2011)	Improving ontologies by automatic reasoning and evaluation of logical definitions. BMC Bioinformatics 12:418.
Robinson PN, Webber C (2014)	Phenotype ontologies and cross-species analysis for translational research. <i>PLoS Genet</i> 10 :e1004268.
E	Decision support/exome analysis
Köhler S et al 2009	Clinical diagnostics in human genetics with semantic similarity searches in ontologies. Am J Hum Genet. 2009 Oct;85(4):457-64.
	Algorithms
Schulz MH et al 2011	Exact score distribution computation for ontological similarity searches. BMC Bioinformatics. 12;12:441.
Bauer S et al 2012	Bayesian ontology querying for accurate and noise-tolerant semantic searches. Bioinformatics;28(19):2502-8.
Robinson PN, Bauer S 2011	Introduction to Bio-Ontologies. Chapman & Hall/CRC Mathematical & Computational Biology